Translate

วันจันทร์ที่ 17 กุมภาพันธ์ พ.ศ. 2557

บทที่ 8 เทคโนโลยีอวกาศ


กล้องโทรทรรศน์ (Telescopes)

คุณลักษณะของกล้องโทรทรรศน์

ตัวแปรต่างๆ ของกล้องโทรทรรศน์ ที่เราควรรู้จัก คือ ...
     1. ขนาดของหน้ากล้อง (Aperture): ตัวแปรที่สำคัญที่สุด ของกล้องโทรทรรศน์ คือ ขนาดของเส้นผ่านศูนย์กลาง ของกล้อง ซึ่งหมายถึงขนาดของเลนส์วัตถุ (ในกล้องโทรทรรศน์ แบบหักเหแสง) หรือขนาดของกระจกสะท้อนแสง (ในกล้องโทรทรรศน์ แบบสะท้อนแสง) ทั้งนี้ก็เพราะว่า การที่วัตถุมองไม่ค่อยเห็น เกิดจากวัตถุนั้นๆจาง หรือได้รับแสงจากวัตถุนั้นน้อย ไม่ได้เกิดจากวัตถุเล็ก แล้วต้องการกำลังขยายมาก ดังนั้น ขนาดของหน้ากล้องที่มาก จะทำให้กล้องได้รับแสงมากกว่า กล้องที่มีขนาดหน้ากล้องน้อย แต่อย่าลืมว่า กล้องที่มีขนาดใหญ่มาก น้ำหนักและการเคลื่อนย้าย ก็อาจเป็นอุปสรรคต่อการใช้งานได้
      2. กำลังขยาย (Power or Magnification): กำลังขยาย ไม่ใช่ ตัวแปรหรือปัจจัยที่สำคัญมากนัก ปกติแล้ว กำลังขยายสูงสุด จะไม่เกิน 50 เท่าของ(ขนาดเส้นผ่านศูนย์กลางของ)กล้อง ในหน่วยนิ้ว (หรือกำลังขยายสูงสุด จะไม่เกิน 2 เท่าของกล้อง ในหน่วยมิลลิเมตร) เช่น กล้องขนาด 6 นิ้ว (6-inch) ควรจะมีกำลังขยายสูงสุดไม่เกิน 300x (300 เท่า) เป็นต้น

      การที่กล้องมีกำลังขยายไม่มากนัก จะทำให้ภาพที่ได้ มีความคมชัดสูง (ดังตัวอย่างภาพต่อมา ทางซ้าย) ขณะที่กล้องที่มีกำลังขยายเกินตัว (เมื่อเทียบกับแสงที่ได้รับ) ก็จะทำให้ภาพเบลอมาก ไม่มีประโยชน์ (ดังตัวอย่างภาพต่อมา ทางขวา) จึงไม่แปลก ที่ท่านอาจพบกล้องโทรทรรศน์ ตามห้างสรรพสินค้า ที่มีขนาดเพียง 2.4 นิ้ว แต่บอกว่า มีกำลังขยายถึง "475 เท่า!" แน่นอนที่สุด ... มันเป็นเพียงแค่ของเล่นเท่านั้น


 1. กล้องโทรทรรศน์ แบบหักเหแสง (Refractor Telescope) 
          เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการหักเหของแสง ผ่านเลนส์วัตถุ (Objective Lens) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ ค้นพบก่อนที่กาลิเลโอจะนำมาพัฒนา และนิยมใช้จนแพร่หลาย ในสมัยของกาลิเลโอ ซึ่งเหมาะสำหรับ สำรวจพื้นผิวของดวงจันทร์, ดาวเคราะห์, วงแหวนและดาวบริวารของดาวเคราะห์ เป็นต้น






2. กล้องโทรทรรศน์ แบบสะท้อนแสง (Refrector Telescope)
         เป็นกล้องโทรทรรศน์ ที่อาศัยหลักการสะท้อนของแสง ผ่านกระจกโค้ง (Concave Objective Mirror) แล้วหักเหอีกครั้ง ผ่านเลนส์ตา (Eye piece) กล้องชนิดนี้ พัฒนาโดยไอแซ็ค นิวตัน จึงมีอีกชื่อหนึ่ง คือ กล้องโทรทรรศน์แบบนิวตัน (Newtonian Telescope) ซึ่งเหมาะสำหรับ การสำรวจกระจุกดาว, เนบิวลา, วัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น 



3. กล้องโทรทรรศน์ แบบ Catadioptric (Catadioptric Telescope) 
          เป็นกล้องโทรทรรศน์ ที่อาศัยทั้งหลักการสะท้อนและการหักเหของแสง เข้าไว้ด้วยกัน ซึ่งกล้องชนิดนี้ ใช้ทั้งกระจกโค้งสะท้อน และเลนส์ในการหักหของแสง และเรียกกล้องชนิดนี้ว่า "Catadioptric" หมายถึง กระจก-เลนส์ (mirror-lens) ตัวอย่างเช่น กล้องแบบ Schmidt-Cassegrain, Maksutov-Cassegrain เป็นต้น กล้องชนิดนี้ จำหน่ายครั้งแรกในยุค ค.ศ. 1970s (ประมาณ 20-30 ปีที่ผ่านมาเท่านั้น) กล้องชนิดนี้ เหมาะสำหรับ การสำรวจกระจุกดาว, เนบิวลา, วัตถุท้องฟ้า หรือกาแล็กซี่ที่ค่อนข้างจาง เป็นต้น 



กล้องโทรทัศน์อวกาศฮับเบิล
กล้องโทรทรรศน์อวกาศฮับเบิล (อังกฤษ: Hubble Space Telescope) คือ กล้องโทรทรรศน์ในวงโคจรของโลกที่กระสวยอวกาศดิสคัฟเวอรีนำส่งขึ้นสู่วงโคจรเมื่อเดือนเมษายน ค.ศ. 1990 ตั้งชื่อตามนักดาราศาสตร์ชาวอเมริกันชื่อ เอ็ดวิน ฮับเบิล กล้องโทรทรรศน์อวกาศฮับเบิลไม่ได้เป็นกล้องโทรทรรศน์อวกาศตัวแรกของโลก แต่มันเป็นหนึ่งในเครื่องมือวิทยาศาสตร์ที่สำคัญที่สุดในประวัติศาสตร์การศึกษาดาราศาสตร์ที่ทำให้นักดาราศาสตร์ค้นพบปรากฏการณ์สำคัญต่าง ๆ อย่างมากมาย กล้องโทรทรรศน์ฮับเบิลเกิดขึ้นจากความร่วมมือระหว่างองค์การนาซาและองค์การอวกาศยุโรป โดยเป็นหนึ่งในโครงการหอดูดาวเอกขององค์การนาซาที่ประกอบด้วย กล้องโทรทรรศน์อวกาศฮับเบิล กล้องรังสีแกมมาคอมป์ตัน กล้องรังสีเอกซ์จันทรา และกล้องโทรทรรศน์อวกาศสปิตเซอร์[3]
การที่กล้องโทรทรรศน์อวกาศฮับเบิลลอยอยู่นอกชั้นบรรยากาศของโลกทำให้มันมีข้อได้เปรียบเหนือกว่ากล้องโทรทรรศน์ที่อยู่บนพื้นโลก นั่นคือภาพไม่ถูกรบกวนจากชั้นบรรยากาศ ไม่มีแสงพื้นหลังท้องฟ้า และสามารถสังเกตการณ์คลื่นอัลตราไวโอเลตได้โดยไม่ถูกรบกวนจากชั้นโอโซนบนโลก ตัวอย่างเช่น ภาพอวกาศห้วงลึกมากของฮับเบิลที่ถ่ายจากกล้องโทรทรรศน์อวกาศฮับเบิล คือภาพถ่ายวัตถุในช่วงคลื่นที่ตามองเห็นที่อยู่ไกลที่สุดเท่าที่เคยมีมา
โครงการก่อสร้างกล้องโทรทรรศน์อวกาศเริ่มต้นมาตั้งแต่ปี ค.ศ. 1923 กล้องฮับเบิลได้รับอนุมัติทุนสร้างในช่วงปี ค.ศ. 1970 แต่เริ่มสร้างได้ในปี ค.ศ. 1983 การสร้างกล้องฮับเบิลเป็นไปอย่างล่าช้าเนื่องด้วยปัญหาด้านงบประมาณ ปัญหาด้านเทคนิค และจากอุบัติเหตุกระสวยอวกาศแชลเลนเจอร์ กล้องได้ขึ้นสู่อวกาศในปี ค.ศ. 1990 แต่หลังจากที่มีการส่งกล้องฮับเบิลขึ้นสู่อวกาศไม่นานก็พบว่ากระจกหลักมีความคลาดทรงกลมอันเกิดจากปัญหาการควบคุมคุณภาพในการผลิต ทำให้ภาพถ่ายที่ได้สูญเสียคุณภาพไปอย่างมาก ภายหลังจากการซ่อมแซมในปี ค.ศ. 1993 กล้องก็กลับมามีคุณภาพเหมือนดังที่ตั้งใจไว้ และกลายเป็นเครื่องมือในการวิจัยที่สำคัญและเป็นเสมือนฝ่ายประชาสัมพันธ์ของวงการดาราศาสตร์
กล้องฮับเบิลเป็นกล้องโทรทรรศน์อวกาศตัวเดียวที่ถูกออกแบบมาให้นักบินอวกาศสามารถเข้าไปซ่อมแซมในอวกาศได้ จนถึงวันนี้มีภารกิจซ่อมบำรุงทั้งหมดสี่ภารกิจและกำลังจะมีภารกิจที่ห้าในปี ค.ศ. 2009 เป็นภารกิจสุดท้าย ภารกิจที่ 1 คือการซ่อมแซมปัญหาด้านภาพในปี ค.ศ. 1993 ภารกิจที่ 2 คือการติดตั้งเครื่องมือสองชิ้นใหม่ในปี ค.ศ. 1997 ภารกิจที่ 3 แบ่งเป็นสองภารกิจย่อยได้แก่ ภารกิจ 3A เป็นการซ่อมแซมเร่งด่วนในปี ค.ศ. 1999 และภารกิจ 3B เป็นการติดตั้งกล้องสำรวจขั้นสูงในเดือนมีนาคม ค.ศ. 2002 อย่างไรก็ตาม หลังจากเกิดโศกนาฏกรรมกระสวยอวกาศโคลัมเบียในปี ค.ศ. 2003 ภารกิจซ่อมบำรุงที่ห้าซึ่งมีกำหนดการในปี ค.ศ. 2004 ก็ถูกยกเลิกไปเพราะเรื่องความปลอดภัย นาซาเห็นว่าภารกิจที่ต้องใช้คนนั้นอันตรายเกินไป แต่ก็ได้ทบทวนเรื่องนี้อีกครั้ง และในวันที่ 31 ตุลาคม ค.ศ. 2006 ไมค์ กริฟฟิน ผู้บริหารของนาซาจึงเปิดไฟเขียวให้กับภารกิจซ่อมบำรุงฮับเบิลครั้งสุดท้ายโดยจะใช้กระสวยอวกาศแอตแลนติสขนส่งลูกเรือ ภารกิจนี้มีกำหนดการในเดือนตุลาคม ค.ศ. 2008 [4][5] ทว่าในเดือนกันยายน ค.ศ. 2008 มีการตรวจพบข้อผิดพลาดบางประการกับตัวกล้อง[6] ทำให้ต้องเลื่อนกำหนดการซ่อมบำรุงออกไปเป็นเดือนพฤษภาคม ค.ศ. 2009[7] เพื่อเตรียมการซ่อมแซมเพิ่มเติม กระสวยอวกาศแอตแลนติสนำยานซ่อมบำรุงขึ้นปฏิบัติการครั้งสุดท้ายเมื่อ 11 พฤษภาคม ค.ศ. 2009 เพื่อทำการซ่อมแซมและติตตั้งอุปกรณ์ใหม่เพิ่มเติม ซึ่งถ้าทุกอย่างเป็นไปตามแผน กล้องฮับเบิลจะกลับมาใช้งานได้ตามปกติอีกครั้งในเดือนกันยายน ค.ศ. 2009
การซ่อมครั้งนี้จะทำให้กล้องฮับเบิลสามารถใช้งานได้อย่างน้อยจนถึงปี 2014 ซึ่งเป็นปีที่จะมีการส่งกล้องโทรทรรศน์อวกาศเจมส์ เวบบ์เพื่อใช้งานแทนต่อไป กล้องโทรทรรศน์อวกาศเจมส์ เวบบ์ มีความสามารถสูงกว่ากล้องฮับเบิลมาก แต่มันจะใช้สำรวจคลื่นช่วงอินฟราเรดเท่านั้น และไม่สามารถทดแทนความสามารถในการสังเกตสเปกตรัมในช่วงที่ตามองเห็นและช่วงอัลตราไวโอเลตของฮับเบิลได้

กล้องโทรทัศน์อวกาศฮับเบิล


ดาวเทียม


ประเภทของดาวเทียม แบ่งเป็น 5 ชนิดคือ
  1. ดาวเทียมสื่อสาร
  2. ดาวเทียมสำรวจ
  3. ดาวเทียมพยากรณ์อากาศ
  4. ดาวเทียมทางการทหาร
  5. ดาวเทียมด้านวิทยาศาสตร์ 

ตารางที่ 1 ความสัมพันธ์ระหว่างระดับสูงของดาวเทียมกับคาบวงโคจรรอบโลก

 ความสูงจากผิวโลก
(กิโลเมตร)
 ความเร็วในวงโคจร
(กิโลเมตรต่อชั่วโมง)
 คาบเวลาในการโคจรรอบโลก 1 รอบ
 160
1,609
35,786
 28,102
25,416
11,052
 1 ชั่วโมง 27.7 นาที
1 ชั่วโมง 57.5 นาที
24 ชั่วโมง



ยานอวกาศ
จรวดหลายตอน
          การนำจรวดขึ้นสู่อวกาศนั้นจะต้องทำการเผาไหม้เชื้อเพลิงจำนวนมาก เพื่อให้เกิดความเร่งมากกว่า 9.8 เมตร/วินาที2 หลายเท่า ดังนั้นจึงมีการออกแบบถังเชื้อเพลิงเป็นตอนๆ เราเรียกจรวดประเภทนี้ว่า “จรวดหลายตอน”(Multistage rocket) เมื่อเชื้อเพลิงตอนใดหมด ก็จะปลดตอนนั้นทิ้ง เพื่อเพิ่มแรงขับดัน (Force) โดยการลดมวล (mass) เพื่อให้จรวดมีความเร่งมากขึ้น (กฎของนิวตัน ข้อที่ 2: ความเร่ง = แรง / มวล)
ความแตกต่างระหว่างเครื่องบินไอพ่น และจรวด
         เครื่องยนต์ของเครื่องบินไอพ่นดูดอากาศภายนอกเข้ามาอัดแน่น และทำการสันดาป (เผาไหม้) ทำให้เกิดแรงดันไปข้างหน้า จนปีกสามารถสร้างแรงยก (ความดันอากาศบนปีกน้อยกว่าความดันอากาศใต้ปีก) ทำให้เครื่องลอยขึ้นได้ ส่วนจรวดบรรจุเชื้อเพลิงและออกซิเจนไว้ภายใน เมื่อทำการสันดาปจะปล่อยก๊าซร้อนพุ่งออกมา ดันให้จรวดพุ่งไปในทิศตรงกันข้าม

จรวดไม่ต้องอาศัยอากาศภายนอก มันจึงเดินทางในอวกาศได้ ส่วนเครื่องบินต้องอาศัยอากาศทั้งในการสร้างแรงยก และการเผาไหม้


  
 


ภาพที่ 4 SR-71, X-15 และ Space Shuttle
          
     อากาศยานบางชนิดมีคุณสมบัติทั้งความเป็นจรวดและเครื่องบินในตัวเอง อย่างเช่น X-15, SR-71 และ กระสวยอวกาศ (Space Shuttle) หากดูอย่างผิวเผินเราแทบจะแยกแยะไม่ออกเลยว่า อากาศยานเหล่านี้คือ จรวด หรือเครื่องบินกันแน่

ยกตัวอย่าง เช่น
 SR-71 มีรูปร่างคล้ายจรวด แต่เป็นเครื่องบินไอพ่นที่บินได้เร็วที่สุดในโลก มีความเร็วเหนือเสียง 3 เท่า
 X-15 เป็นเครื่องบินที่ใช้เครื่องยนต์จรวดที่บินได้เร็วที่สุดในโลก มีความเร็วเหนือเสียง 6.7 เท่า
 กระสวยอวกาศ มีรูปร่างคล้ายเครื่องบินปีกสามเหลี่ยมโดยทั่วไป ทว่าเป็นยานอวกาศที่ติดตั้งเครื่องยนต์จรวดไว้ภายใน กระสวยอวกาศไม่ใช้ปีกเมื่ออยู่ในอวกาศ แต่ขับเคลื่อนและเปลี่ยนทิศทางด้วยเครื่องยนต์ขนาดเล็ก ซึ่งอยู่รอบตัว (ภาพที่ 5) ปีกของกระสวยอวกาศทำหน้าที่สร้างแรงต้านและแรงยก ในขณะที่ร่อนกลับสู่พื้นโลก



ภาพที่ 5 การปรับทิศทางของกระสวยอวกาศ


อุปกรณ์ที่จรวดนำขึ้นไป (Payload)         
 ดังที่กล่าวไปแล้ว จรวดเป็นเพียงตัวขับเคลื่อนขึ้นสู่อวกาศ สิ่งที่จรวดนำขึ้นไปมีมากมายหลายชนิด ขึ้นอยู่กับวัตถุประสงค์หรือภารกิจ ซึ่งอาจจะมีทั้งการทหาร สื่อสารโทรคมนาคม หรืองานวิจัยทางวิทยาศาสตร์
           ขีปนาวุธ (Missile) เป็นคำที่เรียกรวมของจรวดและหัวรบ เนื่องจากจรวดมีราคาสูง และมีพิกัดบรรทุกไม่มาก หัวรบที่บรรทุกขึ้นไปจึงมีขนาดเล็ก แต่มีอำนาจการทำลายสูงมาก เช่น หัวรบนิวเคลียร์
           ดาวเทียม (Satellite) หมายถึง อุปกรณ์ที่ส่งขึ้นไปโคจรรอบโลก เพื่อใช้ประโยชน์ในด้านต่าง ๆ เช่น ถ่ายภาพ โทรคมนาคม ตรวจสภาพอากาศ หรืองานวิจัยทางวิทยาศาสตร์
           ยานอวกาศ (Spacecraft) หมายถึง ยานพาหนะที่โคจรรอบโลก หรือเดินทางไปยังดาวดวงอื่น อาจจะมีหรือไม่มีมนุษย์เดินทางไปด้วยก็ได้ เช่น ยานอะพอลโล่ ซึ่งนำมนุษย์เดินทางไปดวงจันทร์
           สถานีอวกาศ (Space Station) หมายถึง ห้องปฏิบัติการในอวกาศ ซึ่งมีปัจจัยสนับสนุนให้มนุษย์สามารถอาศัยอยู่ในอวกาศได้นานนับเดือน หรือเป็นปี สถานีอวกาศส่วนมากถูกใช้เป็นห้องปฏิบัติการทางวิทยาศาสตร์ เพื่อประโยชน์ในการวิจัย ทดลอง และประดิษฐ์คิดค้นในสภาวะไร้แรงโน้มถ่วง สถานีอวกาศที่ใช้งานอยู่ในปัจจุบัน ได้แก่ สถานีอวกาศนานาชาติ ISS (International Space Station)



ภาพที่ 6 สถานีอวกาศนานาชาติ (ISS)




บทที่ 7 ระบบสุริยะ



   ระบบสุริยะ คือระบบดาวที่มีดาวฤกษ์เป็นศูนย์กลาง และมีดาวเคราะห์ (Planet) เป็นบริวารโคจรอยู่โยรอบ เมื่อสภาพแวดล้อมเอื้ออำนวย ต่อการดำรงชีวิต สิ่งมีชีวิตก็จะเกิดขึ้นบนดาวเคราะห์เหล่านั้น หรือ บริวารของดาวเคราะห์เองที่เรียกว่าดวงจันทร์ (Satellite) นักดาราศาสตร์เชื่อว่า ในบรรดาดาวฤกษ์ทั้งหมดกว่าแสนล้านดวงในกาแลกซี่ทางช้างเผือก ต้องมีระบบสุริยะที่เอื้ออำนวยชีวิตอย่างระบบสุริยะที่โลกของเรา เป็นบริวารอยู่อย่างแน่นอน เพียงแต่ว่าระยะทางไกลมากเกินกว่าความสามารถในการติดต่อจะทำได้ถึง

                          
   

ระบบสุริยะ (Solar System) 
    ระบบสุริยะที่โลกของเราอยู่เป็นระบบที่ประกอบด้วย ดวงอาทิตย์ (The sun) เป็นศูนย์กลาง มีดาวเคราะห์ (Planets) 9 ดวง ที่เราเรียกกันว่า ดาวนพเคราะห์ ( นพ แปลว่า เก้า)   เรียงตามลำดับ จากในสุดคือ ดาวพุธ  ดาวศุกร์  โลก   ดาวอังคาร  ดาวพฤหัส    ดาวเสาร์   ดาวยูเรนัส    ดาวเนปจูน   ดาวพลูโต และยังมีดวงจันทร์บริวารของ ดวงเคราะห์แต่ละดวง (sattelites) ยกเว้นเพียง สองดวงคือ ดาวพุธ และ ดาวศุกร์ ที่ไม่มีบริวาร นอกจากนี้ยังมี ดาวเคราะห์น้อย (Minor planets) ดาวหาง (Comets) อุกกาบาต (Meteorites) ตลอดจนกลุ่มฝุ่นและก๊าซ ซึ่งเคลื่อนที่อยู่ในวงโคจร ภายใต้อิทธิพลแรงดึงดูด จากดวงอาทิตย์ ขนาดของระบบสุริยะ กว้างใหญ่ไพศาลมาก  เมื่อเทียบระยะทาง ระหว่างโลกกับดวงอาทิตย์ ซึ่งมีระยะทางประมาณ 149 ล้านกิโลเมตร หรือ 1 หน่วยดาราศาสตร์ (astronomy unit - au)  กล่าวคือ ระบบสุริยะมีระยะทางไกลไปจนถึงวงโคจร ของดาวพลูโตดาวเคราะห์ที่มีขนาดเล็กที่สุดในระบบสุริยะ ซึ่งอยู่ไกลเป็นระยะทาง 40 เท่าของ 1 หน่วยดาราศาสตร์ และยังไกลห่างออก ไปอีกจนถึงดงดาวหางอ๊อต (Oort's Cloud) ซึ่งอาจอยู่ไกลถึง 500,000 เท่า ของระยะทางจากโลกถึงดวงอาทิตย์ด้วย      ดวงอาทิตย์มีมวลมากกว่าร้อยละ 99 ของมวลทั้งหมดในระบบสุริยะ ที่เหลือนอกนั้นจะเป็นมวลของ เทหวัตถุต่างๆ ซึ่ง ประกอบด้วยดาวเคราะห์ ดาวเคราะห์น้อย ดาวหาง และอุกกาบาต รวมไปถึงฝุ่นและก๊าซ ที่ล่องลอยระหว่าง ดาวเคราะห์ แต่ละดวง โดยมีแรงดึงดูด (Gravity) เป็นแรงควบคุมระบบสุริยะ ให้เทหวัตถุบนฟ้าทั้งหมด เคลื่อนที่เป็นไปตามกฏแรง แรงโน้มถ่วงของนิวตัน ดวงอาทิตย์แพร่พลังงาน ออกมา ด้วยอัตราประมาณ 90,000,000,000,000,000,000,000,000 แคลอรีต่อวินาที เป็นพลังงานที่เกิดจากปฏิกริยาเทอร์โมนิวเคลียร์ โดยการเปลี่ยนไฮโดรเจนเป็นฮีเลียม ซึ่งเป็นแหล่งความร้อนให้กับดาว ดาวเคราะห์ต่างๆ ถึงแม้ว่าดวงอาทิตย์จะเสียไฮโดรเจนไปถึง 4,000,000 ตันต่อวินาทีก็ตาม แต่นักวิทยาศาสตร์ก็ยังมีความเชื่อว่าดวงอาทิตย์ จะยังคงแพร่พลังงานออกมาในอัตราที่เท่ากันนี้ได้อีกนานหลายพันล้านปี     ชื่อของดาวเคราะห์ทั้ง 9 ดวงยกเว้นโลก ถูกตั้งชื่อตามเทพของชาวกรีก เพราะเชื่อว่าเทพเหล่านั้นอยู่บนสรวงสวรค์ และเคารพบูชาแต่โบราณกาล ในสมัยโบราณจะรู้จักดาวเคราะห์เพียง 5 ดวงเท่านั้น(ไม่นับโลกของเรา) เพราะสามารถเห็นได้ ด้วยตาเปล่าคือ ดาวพุธ   ดาวศุกร์  ดาวอังคาร   ดาวพฤหัส   ดาวเสาร์   ประกอบกับดวงอาทิตย์ และดวงจันทร์ รวมเป็น 7 ทำให้เกิดวันทั้ง 7 ในสัปดาห์นั่นเอง และดาวทั้ง 7 นี้จึงมีอิทธิกับดวงชะตาชีวิตของคนเรา ตามความเชื่อถือทางโหราศาสตร์   ส่วนดาวเคราะห์อีก 3 ดวงคือ ดาวยูเรนัส   ดาวเนปจูน    ดาวพลูโต ถูกคนพบภายหลัง แต่นักดาราศาสตร์ก็ตั้งชื่อตามเทพของกรีก เพื่อให้สอดคล้องกันนั่นเอง













  ทฤษฎีการกำเนิดของระบบสุริยะ
    
     หลักฐานที่สำคัญของการกำเนิดของระบบสุริยะก็คือ การเรียงตัว และการเคลื่อนที่อย่างเป็นระบบระเบียบของดาวเคราะห์ ดวงจันทร์บริวาร ของดาวเคราะห์ และดาวเคราะห์น้อย ที่แสดงให้เห็นว่าเทหวัตถุทั้งมวลบนฟ้า นั้นเป็นของระบบสุริยะ ซึ่งจะเป็นเรื่องที่เป็นไปไม่ได้เลยที่เทหวัตถุท้องฟ้า หลายพันดวง จะมีระบบโดยบังเอิญโดยมิได้มีจุดกำเนิด ร่วมกัน 
     Piere Simon Laplace ได้เสนอทฤษฎีจุดกำเนิดของระบบสุริยะไว้เมื่อปี ค.ศ.1796 กล่าวว่า ในระบบสุริยะจะมีมวลของก๊าซรูปร่างเป็นจานแบนๆ ขนาดมหึมาที่เรียกว่า protoplanetary disks หมุนรอบ ตัวเองอยู่ ในขณะที่หมุนรอบตัวเองนั้นจะเกิดการหดตัวลง เพราะแรงดึงดูดของมวลก๊าซ ซึ่งจะทำให้ อัตราการหมุนรอบตัวเองนั้นมีความเร็วสูงขึ้น เพื่อรักษาโมเมนตัมเชิงมุม (Angular Momentum) ในที่สุด เมื่อความเร็ว มีอัตราสูงขึ้น จนกระทั่งแรงหนีศูนย์กลางที่ขอบของกลุ่มก๊าซมีมากกว่าแรงดึงดูด  ก็จะทำให้เกิดมีวงแหวน ของกลุ่มก๊าซแยกตัวออกไปจากศุนย์กลางของกลุ่มก๊าซเดิม และเมื่อเกิดการหดตัวอีกก็จะมีวงแหวนของกลุ่มก๊าซเพิ่มขึ้นๆต่อไปเรื่อยๆ วงแหวนที่แยกตัวไปจากศูนย์กลางของวงแหวนแต่ละวงจะมีความกว้างไม่เท่ากัน ตรงบริเวณที่มีความหนาแน่นมากที่สุดของวง จะคอยดึงวัตถุทั้งหมดในวงแหวน มารวมกันแล้วกลั่นตัว เป็นดาวเคราะห์  ส่วนดวงจันทร์ของดาวเคราะห์ จะเกิดขึ้นจากการหดตัวของดาวเคราะห์ สำหรับดาวหาง และสะเก็ดดาวนั้น เกิดขึ้นจากเศษหลงเหลือระหว่าง การเกิดของดาวเคราะห์ดวงต่างๆ ดังนั้น ดวงอาทิตย์ในปัจจุบันก็คือ มวลก๊าซดั้งเดิมที่ทำให้เกิดระบบสุริยะขึ้นมานั่นเอง     
     นอกจากนี้ยังมีอีกหลายทฤษฎีที่มีความเชื่อในการเกิดระบบสุริยะ แต่ในที่สุดก็มีความเห็นคล้ายๆ กับแนวทฤษฎีของ Laplace ตัวอย่างเช่น ทฤษฎีของ Coral Von Weizsacker นักดาราศาสตร์ฟิสิกส์ชาวเยอรมัน ซึ่งกล่าวว่า มีวงกลมของกลุ่มก๊าซและฝุ่นละอองหรือเนบิวลา ต้นกำเนิดดวงอาทิตย์ (Solar Nebular) ห้อมล้อมอยู่รอบดวงอาทิตย์ ขณะที่ดวงอาทิตย์เกิดใหม่ๆ และ ละอองสสารในกลุ่มก๊าซ เกิดการกระแทกซึ่งกันและกัน แล้วกลายเป็นกลุ่มก้อนสสารขนาดใหญ่ จนกลายเป็น เทหวัตถุแข็ง เกิดขั้นในวงโคจรของดวงอาทิตย์ ซึ่งเราเรียกว่า ดาวเคราะห์ และดวงจันทร์ของ ดาวเคราะห์นั่นเอง




                                                        M42 ในกลุ่มดาวนายพราน (Orion) เป็นตัวอย่างหนึ่งของ Solar Nebular                                            ที่กำลังก่อตัวเป็นระบบสุริยะอีกระบบหนึ่งในอนาคตอีกหลายล้านปีข้างหน้า






       ระบบสุริยะของเรามีขนาดใหญ่โตมากเมื่อเทียบกับโลกที่เราอาศัยอยู่ แต่มีขนาดเล็กเมื่อเทียบกับกาแล็กซีของเราหรือกาแล็กซีทางช้างเผือก ระบบสุริยะตั้งอยู่ในบริเวณ วงแขนของกาแล็กซีทางช้างเผือก (Milky Way) ที่ชื่อแขนโอไลออน ซึ่งเปรียบเสมือนวงล้อยักษ์ที่หมุนอยู่ในอวกาศ โดยระบบสุริยะจะอยู่ห่างจาก จุดศูนย์กลางของกาแล็กซีทางช้างเผือกประมาณ 30,000 ปีแสง ระนาบของระบบสุริยะเอียงทำมุมกับระนาบของกาแลกซี่ประมาณ 60 องศา ดวงอาทิตย์ จะใช้เวลาประมาณ 225 ล้านปี ในการเคลื่อนครบรอบจุดศูนย์กลางของกาแล็กซีทางช้างเผือกครบ 1 รอบ นักดาราศาสตร์จึงมีความเห็นร่วมกันว่า เทหวัตถุทั้งมวลในระบบสุริยะ ไม่ว่าจะเป็นดาวเคราะห์ทุกดวง ดวงจันทร์ของ ดาวเคราะห์ ดาวเคราะห์น้อย ดาวหาง และอุกกาบาต เกิดขึ้นมาพร้อมๆกัน มีอายุเท่ากันตามทฤษฎีจุดกำเนิดของระบบสุริยะ และจากการนำ เอาหินจากดวงจันทร์มาวิเคราะห์การสลายตัวของสารกัมมันตภาพรังสี ทำให้ทราบว่าดวงจันทร์มี อายุประมาณ 4,600 ล้านปี ในขณะเดียวกันนักธรณีวิทยาก็ได้คำนวณ หาอายุของหินบนผิวโลก จากการสลายตัวของอะตอมธาตุยูเรเนียม และสารไอโซโทปของธาตุตะกั่ว ทำให้นักวิทยาศาสตร์เชื่อว่า โลก ดวงจันทร์ อุกกาบาต มีอายุประมาณ 4,600 ล้านปี และอายุของ ระบบสุริยะนับตั้งแต่เริ่มเกิดจากฝุ่นละอองก๊าซในอวกาศจึงมีอายุไม่เกิน 5,000 ล้านปี      ในบรรดาสมาชิกของระบบสุริยะซึ่งประกอบด้วย ดวงอาทิตย์ ดาวเคราะห์ ดาวเคราะห์น้อย ดวงจันทร์ ของดาวเคราะห์ดาวหาง อุกกาบาต สะเก็ดดาว รวมทั้งฝุ่นละองก๊าซ อีกมากมาย นั้นดวงอาทิตย์และดาวเคราะห์ 9 ดวง จะได้รับความสนใจมากที่สุดจากนักดาราศาสตร์ 





     

วันอาทิตย์ที่ 16 กุมภาพันธ์ พ.ศ. 2557

บทที่ 6 ดาวฤกษ์

วัฏจักรของดาวฤกษ์

        ดาวฤกษ์เกิดขึ้นจากกลุ่มแก๊สและฝุ่นรวมตัวกัน ซึ่งเรียกว่า เนบิวลา เมื่อก๊าซร้อนในเนบิวลาอัดแน่นจนมีอุณหภูมิสูงถึง 10 ล้านเคลวิน จะเกิดปฏิกิริยานิวเคลียร์ฟิวชั่นหลอมรวมไฮโดนเจนให้เป็นฮีเลียม กำเนิดเป็นดาวฤกษ์  ดาวฤกษ์ที่เห็นบนท้องฟ้าส่วนมากเป็นดาวในลำดับหลัก เมื่อดาวใกล้หมดอายุจะออกจากลำดับหลักไปเป็นดาวยักษ์แดง และมีวิวัฒนาการที่ต่างกันขึ้นอยู่กับมวลตั้งต้นที่กำเนิดเป็นดาว ดังนี้
  • ดาวฤกษ์ที่มีมวล <2 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวแคระห์ขาว (คาร์บอน) 
  • ดาวฤกษ์ที่มีมวล <8 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวแคระห์ขาว (ออกซิเจน) 
  • ดาวฤกษ์ที่มีมวล >8 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวนิวตรอน และพัลซาร์ 
  • ดาวฤกษ์ที่มีมวล >18 เท่าของดวงอาทิตย์ จบชีวิตเป็นหลุมดำ 

เนบิวลา

        ดาวเกิดจากการรวมตัวของแก๊สและฝุ่นในอวกาศ (Interstellar medium)  เมื่อมีมวล มวลมีแรงดึงดูดซึ่งกันและกันตามกฎความโน้มถ่วงแห่งเอกภพ (The Law of Universal) ของนิวตันที่มีสูตรว่า F = G (m1m2/r2) แรงดึงดูดแปรผันตามมวล มวลยิ่งมากแรงดึงดูดยิ่งมาก เราเรียกกลุ่มแก๊สและฝุ่นซึ่งรวมตัวกันในอวกาศว่า “เนบิวลา” (Nebula) หรือ “หมอกเพลิง” เนบิวลาเป็นกลุ่มแก๊สที่ขนาดใหญ่หลายปีแสง แต่เบาบางมีความหนาแน่นต่ำมาก องค์ประกอบหลักของเนบิวลาคือแก๊สไฮโดรเจน เนื่องจากไฮโดรเจนเป็นธาตุที่มีโครงสร้างพื้นฐาน ซึ่งเป็นธาตุตั้งต้นของทุกสรรพสิ่งในจักรวาล 
        เนบิวลามีอุณหภูมิต่ำ เนื่องจากไม่มีแหล่งกำเนิดความร้อน ในบริเวณที่แก๊สมีความหนาแน่นสูง อะตอมจะยึดติดกันเป็นโมเลกุล ทำให้เกิดแรงโน้มถ่วงดึงดูดแก๊สจากบริเวณโดยรอบมารวมกันอีก ทำให้มีความหนาแน่นและมวลเพิ่มขึ้นอีกจนกระทั่งอุณหภูมิภายในสูงประมาณ 10 เคลวิน   มวลที่เพิ่มขึ้นทำให้พลังงานศักย์โน้มถ่วงของแต่ละโมเลกุลที่ตกเข้ามายังศูนย์กลางของกลุ่มแก๊ส เปลี่ยนรูปเป็นพลังงานความร้อน และแผ่รังสีอินฟราเรดออกมา  
        ต่อมาเมื่อกลุ่มแก๊สมีความหนาแน่นสูงขึ้นจนความร้อนภายในไม่สามารถแผ่ออกมาได้ อุณหภูมิภายในแกนกลางจึงสูงขึ้นอย่างรวดเร็ว  มวลของแก๊สมีแรงโน้มถ่วงสูงจนเอาชนะแรงดันซึ่งเกิดจากการขยายตัวของแก๊สร้อน กลุ่มแก๊สจึงยุบตัวเข้าสู่ศูนย์กลางจนมีอุณหภูมิสูงถึง 10 ล้านเคลวิน จุดปฏิกิริยานิวเคลียร์ฟิวชันทำให้อะตอมของไฮโดรเจนหลอมรวมกันเป็นธาตุใหม่คือ ฮีเลียม มวลบางส่วนเปลี่ยนรูปเป็นพลังงาน (นิวเคลียร์ฟิวชัน) ตามสมการ E = mc2  ดาวฤกษ์จึงอุบัติขึ้นมา 
        ดาวฤกษ์ที่เกิดขึ้นใหม่มีอุณหภูมิสูงประมาณ 25,000 K เป็นดาวสเปกตรัมประเภท O แผ่รังสีเข้มสุดในช่วงอัลตราไวโอเล็ต  เนบิวลาที่ห่อหุ้มดาวดูดกลืนพลังงานจากรังสีอัลตราไวโอเล็ต และแผ่รังสีเข้มสุดในช่วง H-alpha ซึ่งมีความยาวคลื่น 656 nm ออกมาทำให้เรามองเห็นเป็น “เนบิวลาสว่าง” (Diffuse Nebula) สีแดง ได้แก่ เนบิวลาสว่างใหญ่ในกลุ่มดาวนายพราน (M 42 Great Orion Nebula) ในภาพที่ 1  ซึ่งเห็นได้ว่า ใจกลางของเนบิวลาสว่างมีดาวฤกษ์เกิดใหม่อยู่ภายใน

 
ภาพท่ี่ 1 เนบิวลาสว่างในกลุ่มดาวนายพราน        

        เนื่องจากเนบิวลามีแก๊สและฝุ่นอยู่หนาแน่น บางครั้งอนุภาคขนาดใหญ่เป็นอุปสรรคขวางกั้นการแผ่รังสี จึงเกิดการกระเจิงของแสง (Scattering) ทำให้มองเห็นเป็นเนบิวลาสีฟ้า เช่นเดียวกับที่การกระเจิงของแสงอาทิตย์ในบรรยากาศโลกที่ทำให้ท้องฟ้าเป็นสีฟ้า เราเรียกเนบิวลาประเภทนี้ว่า “เนบิวลาสะท้อนแสง” (Reflection Nebula) ตัวอย่างเช่น เนบิวลาในกระจุกดาวลูกไก่ (M45 Pleiades) ดังภาพที่ 2 

     
ภาพท่ี่ 2 เนบิวลาสะท้อนแสงในกระจุกดาวลูกไก่ 

        อย่างไรก็ตามบางส่วนของเนบิวลาเป็นกลุ่มแก๊สที่มีอุณหภูมิต่ำอยู่อย่างหนาแน่น กลุ่มแก๊สเหล่านี้เหล่านี้บดบังแสงสว่างจากดาวฤกษ์เกิดใหม่หรือเนบิวลาสว่างซึ่งอยู่ด้านหลัง เราจึงมองเห็นเป็น “เนบิวลามืด” (Dark Nebula) เช่น เนบิวลารูปหัวม้าในกลุ่มดาวนายพราน (Horsehead Nebula) ดังภาพที่ 3 


ภาพท่ี่ 3 เนบิวลาสะท้อนแสงในกระจุกดาวลูกไก่ 

        แม้ว่าในตำราเรียนจะแบ่งเนบิวลาออกเป็น 3 ประเภทคือ เนบิวลาสว่าง เนบิวลาสะท้อนแสง และเนบิวลามืด ในความจริงแล้วเนบิวลาทั้งสามชนิดเป็นเพียงปรากฎการณ์ซึ่งปรากฏให้เห็นเฉพาะในมุมมองจากโลก  หากดูในภาพที่ 4 จะเห็นว่า เนบิวลาไทรฟิด (M20 Trifid Nebula)  เป็นกลุ่มแก๊สซึ่งมีทั้งเนบิวลาสว่าง เนบิวลาสะท้อนแสง และเนบิวลามืด อยู่ในตัวเดียวกัน  ดาวเกิดใหม่ท่ีอยู่ภายในแผ่รังสีออกมากระตุ้นให้กลุ่มแก๊สท่ีอยู่บริเวณรอบๆ แผ่รังสีปรากฏเป็นเนบิวลาสว่างสีแดง แต่มีกลุ่มแก๊สหนาทึบบางส่วนมาบังแสงสว่างทำให้มองเห็นเป็นเนบิวลามืด และเกิดการกระเจิงของแสงที่กลุ่มแก๊สที่อยู่ด้านหลัง ทำให้มองเห็นเป็นเนบิวลาสะท้อนแสงสีน้ำเงิน 

ภาพท่ี่ 4 เนบิวลาทริฟิดในกลุ่มดาวคนยิงธนู


โปรโตสตาร์

        เนบิวลาเป็นกลุ่มแก๊สที่มีความหนาแน่นและอุณหภูมิต่างๆ กัน  ภาพที่ 1 แสดงส่วนขยายของเนบิวลานกอินทรี (M 16 Eagle Nebula) จากภาพซ้ายมือด้านบนเรียงลำดับจากซ้ายไปขวา และจากบนลงล่าง จนถึงภาพขวามือด้านล่าง  บริเวณที่ปรากฏให้เห็นเป็นจะงอยสีดำ คือ กลุ่มแก๊สความหนาแน่นสูงที่กำลังจะยุบตัวกำเนิดเป็นดาวฤกษ์ 


ภาพที่ 1 เนบิวลานกอินทรีย์ (M 16 Eagle Nebula)

     
   เมื่อกลุ่มแก๊สในเนบิวลาสะสมตัวกันมากขึ้น จนกระทั่งแรงโน้มถ่วงสามารถเอาชนะแรงดันซึ่งเกิดจากการขยายตัวของแก๊ส กลุ่มแก๊สจะยุบตัวลงอย่างต่อเนื่องและหมุนรอบตัวตามกฎอนุรักษ์โมเมนตัมเชิงมุม (Angular Momentum) เป็นจานรวมมวล  แกนกลางของกลุ่มแก๊สเรียกว่า “โปรโตสตาร์”(Protostar)  เมื่อโปรโตสตาร์มีอุณหภูมิสูงถึงระดับล้านเคลวิน จะปล่อยอนุภาคพลังงานสูงที่มีลักษณะคล้ายลมสุริยะเรียกว่า “Protostellar Wind” ออกมา เมื่อโปรโตสตาร์ยุบตัวต่อไป กระแสอนุภาคพลังงานสูงจะมีความรุนแรงมาก จนปรากฏเป็นลำพุ่งขึ้นจากขั้วของดาวตามแกนหมุนรอบตัวเองของโปรโตสตาร์ (ภาพที่ 2)

ภาพที่ 2 โปรโตสตาร์
      
  การยุบตัวของโปรโตสตาร์ดำเนินต่อไป จนกระทั่งแกนของโปรโตสตาร์มีอุณหภูมิสูงถึง 10 ล้านเคลวิน จุดปฏิกิริยานิวเคลียร์ฟิวชัน (Nuclear Fusion) ทำให้อะตอมไฮโดรเจนหลอมรวมกันกลายเป็นธาตุที่หนักกว่าคือฮีเลียม ขณะนั้นแก๊สที่แก่นกลางจะมีอุณหภูมิสูงมากและมีความดันสูงพอที่จะต้านทานแรงโน้มถ่วงของดาว การยุบตัวของดาวจึงยุติลง  สมดุลระหว่างแรงโน้มถ่วงและแรงดันของแก๊สร้อนรักษาขนาดของดาวให้คงที่เป็นรูปทรงกลม ณ จุดนี้ถือว่า ดาวฤกษ์ได้ถือกำเนิดขี้นแล้ว (The star is born)  ตลอดช่วงชีวิตของดาวจะมีกลไกอัตโนมัติควบคุมปฏิกิริยาฟิวชันภายในแก่นดาว หากอัตราการเกิดปฏิกิริยาฟิวชันสูงเกินไป แก๊สร้อนที่แก่นกลางจะดันดาวให้ขยายตัวออก ทำให้อุณภูมิลดลงและอัตราการเกิดฟิวชันก็จะลดลงด้วย ในทางกลับกันหากอัตราการเกิดฟิวชันต่ำเกินไป แก๊สที่แกนกลางเย็นตัวลง เนื้อสารของดาวจะยุบตัวกดทับทำให้อุณหภูมิกลับสูงขึ้น เพิ่มอัตราการเกิดฟิวชันคืนสู่ระดับปกติ  อย่างไรก็ตามขนาดของดาวฤกษ์จะยุบพองเล็กน้อยตลอดเวลา ตามกลไกการควบคุมโดยธรรมชาติ 
ภาพที่ 3 แผนภาพ H-R แสดงวิวัฒนาการของกำเนิดดาว
       
     เนื่องจากเนบิวลามีขนาดใหญ่และมีความหนาแน่นไม่เท่ากัน เนบิวลาจึงสามารถก่อกำเนิดดาวฤกษ์จำนวนหลายพันดวง โดยที่ดาวเกิดใหม่แต่ละดวงมีมวลและขนาดแตกต่างกัน  โปรโตสตาร์ที่มวลตั้งต้นเท่ากับดวงอาทิตย์ เมื่อจุดนิวเคลียร์ฟิวชันจะเกิดเป็นดาวสเปกตรัม G สีเหลือง โปรโตสตาร์ที่มีมวลมากกว่าสองเท่าของดวงอาทิตย์ขึ้นไป จะเกิดเป็นดาวสเปกตรัม O, B หรือ A สีขาวอมน้ำเงิน  ส่วนโปรโตสตาร์ที่มีมวลน้อยกว่าดวงอาทิตย์จะเกิดเป็นดาวสเปกตรัม K หรือ M สีส้มแดง         แผนภาพ H-R ในภาพที่ 4 แสดงให้เห็นถึงมวลตั้งต้นของโปรโตสตาร์ซึ่งทำให้เกิดดาวฤกษ์ในลำดับหลักซึ่งมีสเปกตรัมประเภทต่างๆ จะเห็นได้ว่า โปรโตสตาร์ที่มีมวลตั้งต้นมากกว่าดวงอาทิตย์ 15 เท่า จะพัฒนาเป็นดาวฤกษ์สีน้ำเงินโดยใช้เวลา 10,000 ปี  โปรโตสตาร์ที่มีมวลเท่ากับดวงอาทิตย์จะพัฒนาเป็นดาวฤกษ์สีเหลืองโดยใช้เวลา 100,000 ปี  ส่วนโปรโตสตาร์ที่มีมวลตั้งต้นเพียง 0.5 เท่าของดวงอาทิตย์ จะพัฒนาเป็นดาวฤกษ์สีแดง เช่น Gliese 581 ในภาพท่ี 4  โดยใช้เวลา 1,000,000 ปี ทั้งนี้เป็นเพราะมวลตั้งต้นสูงทำให้เกิดนิวเคลียร์ฟิวชันรุนแรงกว่ามวลตั้งต้นต่ำ อัตราการเผาไหม้ที่รุนแรงทำให้อุณหภูมิสูง ดาวฤกษ์มวลมากจึงมีขนาดใหญ่และแผ่รังสีคลื่นสั้นกว่า ดาวฤกษ์มวลน้อยซึ่งมีขนาดเล็กอุณหภูมิต่ำและแผ่รังสีคลื่นยาว 

ภาพที่ 4 ขนาดของดวงอาทิตย์ (ซ้ายมือ) เปรียบเทียบกับดาวแคระแดง Gliese 581 (ขวามือ) 

      
      อย่างไรก็ตามโปรโตสตาร์ทุกดวงไม่จำเป็นต้องประสบความสำเร็จในการพัฒนาเป็นดาวฤกษ์เสมอไป  หากกลุ่มแก๊สมีมวลตั้งต้นน้อยกว่าดวงอาทิตย์ 0.08 เท่า มวลไม่มากพอที่จะสร้างแรงกดดันให้เกิดอุณหภูมิสูงพอที่จะจุดนิวเคลียร์ฟิวชัน  โปรโตสตาร์จึงยุบตัวลงกลายเป็นดาวแคระน้ำตาล (Brown Dwarf) เช่น ดาวพฤหัสบดีในระบบสุริยะของเรา  ซึ่งถ้าหากดาวพฤหัสบดีมีมวลตั้งต้นมากกว่านี้ 80 เท่า ความกดดันที่ใจกลางจะทำให้อุณหภูมิสูงจนเกิดนิวเคลียร์ฟิวชันและพัฒนาเป็นดวงอาทิตย์ดวงที่สอง  ระบบสุริยะของเราก็จะเป็นระบบดาวคู่ (Binary Stars) เช่นเดียวกับระบบดาวฤกษ์ส่วนใหญ่บนท้องฟ้า 
        ในทางกลับกันกลุ่มแก๊สที่มีมวลมากกว่าดวงอาทิตย์ 100 เท่า  แรงกดดันของแก๊สจะมีอุณหภูมิสูงมากเกินไป ทำให้อัตราการเกิดปฏิกิริยานิวเคลียร์ฟิวชันสูงเกินกว่าจะรักษาสมดุลไว้ได้ ดาวจะระเบิดในทันที ดังนั้นดาวฤกษ์ทุกดวงจึงมีมวลอยู่ระหว่าง 0.08 ถึง 100 เท่า ของดวงอาทิตย์


กระจุกดาวเปิด

        เนบิวลาเปรียบเสมือนรังไข่ของดาว เนบิวลาเป็นกลุ่มแก๊สซึ่งประกอบด้วยอะตอมของไฮโดรเจนซึ่งเป็นวัตถุต้นกำเนิดของดาว เนบิวลาแต่ละกลุ่มมีขนาดหลายปีแสง สามารถก่อกำเนิดดาวฤกษ์จำนวนหลายร้อยดวงในระยะเวลาไล่เลี่ยกัน ภาพที่ 1 แสดงการเปรียบเทียบภาพถ่ายในช่วงแสงที่ตามองเห็นกับภาพอินฟราเรดของเนบิวลาสว่างใหญ่ในกลุ่มดาวนายพราน (M 42 Great Orion Nebula)  ภาพถ่ายแสงที่ตามองเห็นด้านซ้ายมือแสดงให้เห็นว่าใจกลางของเนบิวลาเต็มไปด้วยกลุ่มแก๊สหนาทึบ มีดาวฤกษ์ซึ่งเป็นต้นกำเนิดของแสงซึ่งเรียกว่า "เทรปีเซียม" (Trapezium) อยู่ภายในเพียงไม่กี่ดวง  แต่ภาพถ่ายอินฟราเรดทางด้านขวามือแสดงให้เห็นว่า ภายในใจกลางของเนบิวลามีดาวอยู่เป็นจำนวนมาก ทั้งนี้เนื่องจากรังสีอินฟราเรดมีความยาวคลื่นมาก จึงส่องผ่านทะลุกลุ่มแก๊สออกมาได้

ภาพที่ 1 เปรียบเทียบภาพแสงที่ตาเห็น (ซ้ายมือ) กับภาพอินฟราเรด (ขวามือ) ของเนบิวลานายพราน

        หลังจากที่โปรโตสตาร์จุดปฏิกิริยานิวเคลียร์ฟิวชันกลายเป็นดาวฤกษ์ที่มีอุณหภูมิสูงมาจนแผ่รังสีอัลตราไวโอเล็ตและลมดาราวาต (Stellar Winds) ซึ่งเป็นกระแสอนุภาคพลังงานสูงที่มีลักษณะเช่นเดียวลมสุริยะของดวงอาทิตย์ พัดกวาดแก๊สในเนบิวลาให้สลายตัวไป  เผยให้เห็นดาวฤกษ์เกิดใหม่นับร้อยดวงซึ่งซ่อนตัวภายในเรียกว่า “กระจุกดาวเปิด” (Open Cluster)  ภาพท่ี 2 เป็นภาพของกระจุกดาวลูกไก่ซึ่งมีแก๊สห่อหุ้มอยู่เบาบาง เนื่องจากดาวฤกษ์ที่เกิดใหม่ส่วนใหญ่มีอุณหภูมิสูงกว่า 10,000 K แผ่รังสีเข้มสุดในช่วงรังสีอัลตราไวโอเล็ต ซึ่งมีพลังงานสูง ทำลายอะตอมของไฮโดรเจนที่เคยเป็นแก๊สในเนบิวลา  และในที่สุดก็จะเหลือให้เห็นเป็นเพียงกระจุกดาวเปิดเท่านั้น

ภาพท่ี 2 ดาวฤกษ์ในกระจุกดาวลูกไก่       
        อุปมาได้ว่าชีวิตของดาวเฉกเช่นชีวิตของคน แม้ว่าจะเกิดเป็นพี่น้องคลานตามกันมา แต่ละคนย่อมมีวิถีชีวิตเป็นของตัวเอง ดวงอาทิตย์ของเราถือกำเนิดพร้อมๆ กับดาวฤกษ์จำนวนมากซึ่งเป็นสมาชิกของกระจุกดาวเปิดภายในโซลาร์เนบิวลา (Solar nebula) แต่เมื่อกาลเวลาผ่านไป 4,600 ล้านปี  ดาวฤกษ์ที่มีมวลมากเผาผลาญเชื้อเพลิงอย่างรวดเร็วและแตกดับสูญไปแล้ว  ดาวฤกษ์มวลน้อยยังคงอยู่ ดาวแต่ละดวงแยกย้ายกันโคจรไปตามแขนของกาแล็กซีทางช้างเผือกในทิศทางที่แตกต่างกัน จึงไม่คงเหลือสภาพกระจุกดาวเปิดให้เห็น  ดวงอาทิตย์ของเราโคจรรอบทางช้างเผือกมาแล้วมากกว่า 15 รอบ 
        ในการสาธิตสมบัติของดาวฤกษ์เกิดใหม่ นักดาราศาสตร์ได้นำสมบัติของดาวฤกษ์ในกระจุกดาวลูกไก่มาลงจุดแสดงในแผนภาพแฮรท์สชปรุง – รัสเซลล์ (H-R Diagram) ดังภาพที่ 3 จะเห็นว่า สมาชิกดาวส่วนใหญ่เป็นดาวลำดับหลักที่มีสเปกตรัม A และ F ซึี่งเป็นดาวสีขาว นอกจากนั้นยังมีดาวยักษ์สีขาวเป็นจำนวนมาก ดาวยักษ์เหล่านี้มีอุณหภูมิสูงเนื่องจากมีมวลตั้งตั้นสูง เกิดปฏิกริยานิวเคลียร์ฟิวชันอย่างรุนแรง ดาวเผาผลาญเชื้อเพลิงอย่างรวดเร็ว ทำให้ดาวมีอายุสั้นเมื่อเปรียบเทียบกับดาวลำดับหลักสีแดง ซี่งมีมวลตั้งตั้นต่ำ เกิดปฏิกริยานิวเคลียร์ฟิวชันไม่รุนแรง ดาวเผาผลาญเชื้อเพลิงอย่างช้าๆ ทำให้ดาวมีอายุยืนยาว
ภาพที่ HR diagram ของกระจุกดาวลูกไก่ 


ดาวลำดับหลัก

        ขนาดของดาวฤกษ์ขึ้นอยู่กับแรงดันแก๊สร้อนซึ่งดันออกจากแก่นกลางสู่พื้นผิว และมวลของดาวซึ่งทำให้เกิดแรงโน้มถ่วง หากอัตราการเกิดฟิวชันสูงเกินไป แก๊สที่แก่นกลางจะดันดาวให้ขยายตัวออก เมื่อแก๊สขยายตัวอุณหภูมิจะลดต่ำลง (ตามกฎของแก๊ส) ทำให้อัตราการเกิดฟิวชันลดลงด้วย ในทางกลับกันหากอัตราการเกิดฟิวชันต่ำเกินไป แก๊สที่แก่นกลางจะเย็นตัวลง แรงดันแก๊สลดลง เนื้อสารของดาวยุบตัวลงมา ทำให้เกิดความดันและอุณหภูมิสูงขึ้น เพิ่มอัตราการเกิดฟิวชันให้สูงขึ้น ระบบกลไกนี้ช่วยรักษาสมดุลของดาวฤกษ์ ให้มีอัตราการเกิดปฏิกิริยาฟิวชันคงที่สม่ำเสมอเกือบตลอดทั้งชีวิตของดาว อายุขัยของดาวในช่วงเวลานี้เราเรียกว่า “ดาวลำดับหลัก” (Main sequence stars)


ภาพที่ 1 แผนภาพ H-R แสดงคุณสมบัติของดาวที่รู้จักกันดี
        เมื่อพิจารณาในแผนภาพ H-R ในภาพที่ 1 จะเห็นว่า ดาวส่วนใหญ่จะอยู่ในลำดับหลัก ทั้งนี้เนื่องจากดาวใช้เวลา 80% ของอายุขัยอยู่ในลำดับหลัก ดาวลำดับหลักสีน้ำเงินมีอุณหภูมิสูงและมีกำลังส่องสว่างมากกว่าดาวลำดับหลักสีแดง เพราะว่า ดาวลำดับหลักสีน้ำเงินมีมวลตั้งต้นสูงมาก จึงมีขนาดใหญ่ แก๊สมวลมากกดทับกัน ทำให้ดาวมีอุณหภูมิสูงจนแผ่รังสีที่มีความยาวคลื่นเข้มสุดในช่วงรังสีอัลตราไวโอเล็ต ส่วนดาวสีแดงมีมวลตั้งต้นน้อย มีขนาดเล็ก แก๊สจำนวนน้อยกดทับกัน ทำให้ดาวมีอุณหภูมิต่ำ แผ่รังสีที่มีความยาวคลื่นเข้มสุดในช่วงรังสีอินฟราเรด

ภาพที่ 2 สเปกตรัมของดาวประเภทต่างๆ
        เมื่อพิจารณาเปรียบเทียบสเปกตรัมของดาวแต่ละประเภทจะพบองค์ประกอบดังนี้ (ดูภาพที่ 2 และ 3 ประกอบ)
  • ดาวสเปกตรัม O อุณหภูมิมากกว่า 25,000​ K มีเส้นดูดกลืนของไฮโดรเจนอยู่อย่างเบาบาง เนื่องจากดาวมีอุณหภูมิสูงมากกว่าสามหมื่นเคลวิน ประจุไม่สามารถเกาะตัวเป็นอะตอม จึงอยู่ในสถานะไอโอไนเซชัน (Ionization)
  • ดาวสเปกตรัม B มีอุณหภูมิพื้นผิว 25,000 - 10,000​ K มีเส้นดูดกลืนของไฮโดรเจนและฮีเลียม เนื่องจากดาวมีอุณหภูมิต่ำลงพอที่ประจุจะจับตัวกันเป็นอะตอมได้แล้ว
  • ดาวสเปกตรัม A มีอุณหภูมิพื้นผิว 10,000 - 8,000​ K อุณหภูมิประมาณ​10,000 - 25,000​ K มีเส้นดูดกลืนของไฮโดรเจนชัดเจนยิ่งขึ้น เนื่องจากดาวมีอุณหภูมิต่ำกว่าสเปกตรัม B
  • ดาวสเปกตรัม F มีอุณหภูมิพื้นผิว 8,000 - 6,000​ K ยังคงมีเส้นดูดกลืนของไฮโดรเจน และเริ่มมีเส้นดูดกลืนอะตอมของธาตุหนักหลายชนิด เช่น แคลเซียม
  • ดาวสเปกตรัม G มีอุณหภูมิพื้นผิว 6,000 - 5,000​ K เช่น ดวงอาทิตย์ มีเส้นดูดกลืนของทั้งธาตุหนักและธาตุเบาหลายชนิด เช่น ไฮโดรเจน แคลเซียม และเหล็ก เป็นต้น
  • ดาวสเปกตรัม K  มีอุณหภูมิพื้นผิว 5,000 - 4,000​ K มีเส้นดูดกลืนของทั้งธาตุหนักและธาตุเบาหลายชนิด เช่น ไฮโดรเจน แคลเซียม และเหล็ก เป็นต้น
  • ดาวสเปกตรัม M มีอุณหภูมิพื้นผิว 4,000 - 3,000​ K มีเส้นดูดกลืนของโมเลกุล เช่น ไททาเนียมออกไซด์ (TiO) และไฮโดรคาร์บอน (CH) เนื่องจากที่อุณหภูมิประมาณ 3,000 เคลวิน อะตอมสามารถเกาะตัวกันเป็นโมเลกุล
ภาพที่ 3 ความเข้มของเส้นดูดกลืนบนสเปกตรัมประเภทต่างๆ
        ธาตุต่างๆ บนผิวดาวมีองค์ประกอบเคมีที่หลายหลาก สืบเนื่องจากระดับพลังงานที่อะตอมดูดกลืน ซึ่งจะแทนสัญลักษณ์ด้วยตัวเลขโรมัน แสดงระดับของการไอโอไนเซชัน เช่น Si I หมายถึง ซิลิกอนปรกติซึ่งไม่มีการเสียอิเล็กตรอน Si II หมายถึงซิลิกอนที่สูญเสียอีเลคตรอน 1 ตัว Si III หมายถึง ซิลิกอนซึ่งสูญเสียอิเล็กตรอน 2 ตัว 
 
        ดวงอาทิตย์มีอุณหภูมิพื้นผิว 5,800 K จัดเป็นสเปกตรัม G2 มีเส้นดูดกลืนเรียงตามความเข้มจากมากไปน้อยดังนี้ Ca II, Fe II, Fe I, H และ Ca I ตามลำดับ จะเห็นว่าอุณหภูมิระดับนี้สูงพอที่จะทำให้ อะตอมของแคลเซียมและเหล็ก สูญเสียอิเล็กตรอน
หมายเหตุ
        "ดาวสีน้ำเงินเป็นดาวเกิดใหม่มีอายุน้อย ดาวสีแดงเป็นดาวใกล้ตายมีอายุมาก" ไม่ใช่ข้อสรุปที่ถูกต้องเสมอไป จริงอยู่ที่เรามองเห็นดาวฤกษ์เกิดใหม่บนท้องฟ้าส่วนมากเป็นดาวสเปกตรัม O, B สีขาวอมน้ำเงิน เพราะว่าเป็นดาวมวลมากจึงมีกำลังส่องสว่างมาก  อย่างไรก็ตามยังมีดาวฤกษ์เกิดใหม่จำนวนมากมายที่เป็นดาวแคระสีแดง เพียงแต่เป็นดาวมวลน้อยจึงมีขนาดเล็กไม่ส่องสว่างให้เห็นด้วยตาเปล่า   




วันพุธที่ 12 กุมภาพันธ์ พ.ศ. 2557

บทที่ 5 เอกภพ


เอกภพ


     เอกภพวิยาในอดีต
    1.เอกภพของชาวสุเมเรียน
    2.เอกภพของกรีก
    3.เอกภพของเคปเลอร์
    4.เอกภพของกาลิเลโอ


1.เอกภพของชาวสุเมเรียนเเละบาบิโลน

       ในยุคเริ่มต้นประวัติศาสตร์ของมนุษย์โลกในช่วงเวลาประมาณ 7,000 ปีก่อนคริตศักราช นักประวัติศาสตร์เชื่อว่าได้มีชนชาติที่มีอารยะธรรมอาศัยอยู่ในบริเวณตอนกลางของทวีปเอเชียกลางซึ่งในปัจจุบันนี้คือประเทศอิรัก ดินแดนนี้เป็นที่รู้จักกันดีของนักประวัติศาสตร์ว่าคือดินแดน “เมโสโปเตเมีย (Mesopotamia)” ชนที่อยู่ในยุคสมัยนั้นได้เรียกตนเองว่า “ชาวสุเมอเรี่ยน (Sumerian)” ชาวสุเมอเรี่ยนได้ริเริ่มประดิษฐ์คิดค้นการเขียนอักษรที่มีชื่อเรียกว่า “cuneiform” เพื่อสื่อความหมายต่างๆลงบนแผ่นดินเหนียว ต่อมาทำให้นักประวัติศาสตร์ได้รู้ว่าชาวสุเมอเรียนนั้นเป็นกลุ่มชนที่มีอารยะธรรมสูง ในบันทึกนี้นักประวัติศาสตร์ได้มีการค้นพบการบันทึกตำแหน่งของดาวฤกษ์และดาวเคราะห์ต่างๆในท้องฟ้าพร้อมกับมีการตั้งชื่อให้กับกลุ่มดาวต่างๆในท้องฟ้าอีกด้วย นอกจากนี้ชาวสุเมอเรี่ยนยังได้อธิบายการเคลื่อนที่ของดวงดาวต่างๆในท้องฟ้าโดยมีความเชื่อว่าเป็นเพราะเทพเจ้าต่างๆที่ปกครองโลก ท้องฟ้า และแหล่งน้ำต่างๆบันดาลให้เป็นไปเช่นนั้น  จากหลักฐานทางประวัติศาสตร์นี้จะเห็นได้ว่าโครงสร้างที่ใหญ่ที่สุดที่ส่งผลกระทบต่อชาวสุเมอเรี่ยนก็คือท้องฟ้าและดวงดาวต่างๆ ดังนั้นแบบจำลองของเอกภพของชาวสุเมอเรี่ยนก็คือห้วงท้องฟ้าทั้งหมดที่มีดาวฤกษ์และดาวเคราะห์ต่างๆเคลื่อนที่ไปตามเวลาโดยมีโลกเป็นจุดศูนย์กลางของการเคลื่อนที่ทั้งหมด
            ในช่วงระยะเวลาประมาณ 2,000 ปี ถึง 500 ปีก่อนคริตศักราช ชาวบาบิโลนได้ริเริ่มการสังเกตและจดบันทึกการเคลื่อนที่ของดวงดาวต่างๆอย่างเป็นระบบเป็นประจำโดยอาศัยพื้นฐานความรู้ทางดาราศาสตร์ของชาวสุเมอเรี่ยน  นักประวัติศาสตร์ได้พบว่าเมื่อเวลา 1,600 ปีก่อนคริตศักราชชาวบาบิโลนได้จัดทำบัญชีรายชื่อของดาวฤกษ์และดาวเคราะห์ต่างในท้องฟ้าพร้อมทั้งได้ระบุตำแหน่งของการเคลื่อนที่ของดาวฤกษ์และดาวเคราะห์เหล่านั้นอย่างระเอียดทุกๆวัน ซึ่งต่อมาทำให้ต่อมาชาวบาบิโลนได้นำผลของการสังเกตการณ์นี้มาใช้ในการทำนายการเคลื่อนที่ของดาวเคราะห์ต่างๆในท้องฟ้าได้อย่างถูกต้อง และได้ช่วยให้ชาวบาบิโลนสามารถทำนายถึงการเปลี่ยนของฤดูกาลได้อย่างถูกต้องและแม่นยำมาก จึมีผลทำให้ระบบการเกษตรของชาวบาบิโลนมีประสิทธิภาพสูง นอกจากนี้ชาวบาบิโลนยังได้อาศัยตำแหน่งของดวงอาทิตย์และดวงจันทร์ในวันต่างๆเพื่อทำปฏิทินแสดงวันที่และฤดูกาลได้อย่างถูกต้องแม่นยำด้วย แต่อย่างไรก็ตามพื้นฐานความรู้และความเชื่อในเรื่องเอกภพของชาวบาบิโลนกับชาวสุเมอเรียนก็ยังคงเหมือนกัน กล่าวคือพวกเขาทั้งสองชนชาติมีความเชื่อว่าเอกภพก็คือห้วงท้องฟ้าทั้งหมดที่มีดาวฤกษ์และดาวเคราะห์ต่างๆเคลื่อนที่ไปตามเวลาโดยมีโลกเป็นจุดศูนย์กลางของการเคลื่อนที่ และ ปรากฏการ์ต่างๆที่เกิดขึ้น เช่น การโคจรของดาวฤกษ์ ดาวเคราะห์ ดวงอาทิตย์ และดวงจันทร์นั้นเกิดขึ้นเพราะเทพเจ้าต่างๆได้ดลบันดาลให้เกิดขึ้นตามความประสงค์ของเทพเจ้


2.เอกภพของกรีก
ชาวกรีกได้ประยุกต์ความรู้ทางคณิตศาสตร์ในเรื่องจำนวนและเรขาคณิตในการพัฒนาแบบจำลองเอกภพ “อริส โตเติล” เป็นชาวกรีกคนแรกที่พบว่า โลกมีลักษณะเป็นทรงกลม นอกจากนี้ “อริส ตาร์คัส” เป็นบุคคลแรกที่ระบุว่า โลกโคจรรอบดวงอาทิตย์เป็นจุดศูนย์กลาง และโลกจะโคจรครบรอบ1 ปี ในเวลา ปี ทำให้แบบจำลองของชาวกรีกมีลักษณะที่อธิบายได้ทางเรขาคณิต


3.เอกภพของเคปเลอร์

ไทโค บราเฮ (Tycho Brahe, ค.ศ.1546 – ค.ศ.1601) นักดาราศาสตร์ชาวฮอลแลนด์ได้ทำการสังเกตการเคลื่อนที่ของดาวเคราะห์ต่างๆและจดบันทึกตำแหน่งอย่างละเอียดทุกวันเป็นเวลานับสิบปี ผลจากการสังเกตของเขานี้ทำให้เขาไม่เชื่อในคำอธิบายการโคจรของดาวเคราะห์ต่างรอบดวงอาทิตย์ของโคเปร์นิคัสที่ว่าดาวเคราะห์ต่างๆเคลื่อนที่รอบๆดวงอาทิตย์เป็นรูปวงกลมสมบูรณ์แบบ แต่ผลงานการสังเกตการณ์และสรุปผลนี้ยังไม่เป็นผลสำเร็จเขาก็ได้มาเสียชีวิตไปเสียก่อน แต่อย่างไรก็ตามเขาได้มอบบันทึกของการสังเกตนี้ให้แก่ผู้ช่วยของเขาซึ่งเป็นชาวเยอรมัน คือ โยฮัน เคปเลอร์ (Johannes Kepler, ค.ศ. – ค.ศ. )” ดังนั้นจึงทำให้เคปเลอร์ได้ทำการสังเกตการณ์เพิ่มเติมแล้วจึงได้ตั้งแบบจำลองเอกภพที่ได้อธิบายการเคลื่อนที่ของดาวเคราะห์ต่างๆเอาไว้ว่า ดวงอาทิตย์ยังคงเป็นจุดศูนย์กลางการเคลื่อนที่ของระบบโดยที่ดาวฤกษ์ต่างๆจะอยู่ในตำแหน่งประจำที่ ส่วนดาวเคราะห์ต่างๆจะโคจรรอบดวงอาทิตย์เป็นรูปวงรีไม่ใช่วงโคจรรูปวงกลมสมบูรณืแบบดังที่แสดงอยู่ในแบบจำลองของโคเปอร์นิคัส และดวงอาทิตย์จะตั้งอยู่ที่จุดโฟกัสจุดหนึ่งของวงโคจรรูปวงรีนั้น นอกจากนั้นเคปเลอร์ยังพบว่าการอธิบายข้อมูลของไทโคบราเฮด้วยแบบจำลองของเขาจะมีความถูกต้องแม่นยำต่อข้อมูลมากกว่าการอธิบายด้วยแบบจำลองของโคเปอร์นิคัสด้วย


4.เอกภพของกาลิเลโอ
  
กาลิเลโอเป็นชาวอิตาลี เป็นคนแรกที่ได้ใช้กล้องโทรทัศน์ เพื่อการสังเกตการณ์ทางดาราศาสตร์ แบบจำลองของกาลิเลโอเชื่อว่า ดวงอาทิตย์เป็นศูนย์กลางของระบบสุริยะ โดยมีดาวเคราะห์ต่างๆ เคลื่อนที่รอบดวงอาทิตย์เป็นวงกลม แบบจำลองของเขาเป็นแบบจำลองที่มีขนาดไม่จำกัด ซึ่งเชื่อว่ายังมีวัตถุอื่นที่อยู่ไกลกว่าดาวเสาร์ ต่อมา “เซอร์ ไอแซก นิวตัน” ค้นพบว่า ลักษณะการโคจรของดาวเคราะห์เกิดจากผลของแรงโน้ม ทำให้ปัจจุบันนักดาราศาสตร์ยอมรับกฎการเคลื่อนที่ดาวเคราะห์ ข้อ ของเคปเลอร์


กำเนิดเอกภพ






สิ่งที่ควรรู้เกี่ยวกับเอกภพ

- เอกภพมีความกว้างใหญ่ไพศาล ประกอบด้วย กาเเล็กซี ประมาณเเสนล้านกาเเล็กซี
- เเต่ละกาเเล็กซีมีเส้นผ่านศูนย์กลางประมาณ 100000 ปีเเสง
- 1ปีเเสง คือ ระยะทางที่เเสงใช้เวลาในการเดินทาง 1ปี มี ค่าประมาณ 9.5 ล้านล้านกิโลเมตร
- ทฤษฎีที่ใช้ในการอธิบายการเกิดของเอกภพ ได้เเก่ทฤษฎีบิกเเบง


         ทฤษฎีบิกเเบง

ทฤษฎี “บิกแบง” เป็นทฤษฎีกำเนิดเอกภพที่เป็นที่ยอมรับอย่างกว้างขวางในปัจจุบัน ซึ่งเป็นจุดเริ่มต้นของเอกภพและเวลาได้อธิบายว่า เอกภพเริ่มจากพลังงานเปลี่ยนสสาร จากขนาดเล็กเป็นขนาดใหญ่ จากอุณหภูมิสูงเป็นอุณหภูมิต่ำ สสารที่เกิดขึ้นครั้งแรกเป็นอนุภาคมูลฐานชนิดต่างๆ  จากนั้นอนุภาคเหล่านี้จึงรวมตัวกันกลายเป็นอะตอมของไฮโดรเจนและฮีเลียม ซึ่งมีวิวัฒนาการต่อเนื่องจนกลายเป็นกาแล็กซี เนบิวลา ดาวฤกษ์ ระบบสุริยะ โลก ดวงจันทร์ มนุษย์และสิ่งมีชัวิตต่างๆ


หลักฐานสนับสนุน Big Bang

 การขยายตัวของเอกภพจากการศึกษากาแล็กซีที่มีขนอดใหญ่้ที่สุด ที่อยู่ใหล้โลก คือ กาแล็กซีแอนโดรมีนา ซึ่งอยู่ห่างจากโลกประมาณ 2 ล้านปีแสง และกาแล็กซีอื่น ๆ พบว่า แต่ละกาแล็กซีกำลังเคลื่อนตัวออกห่างกันไปเรื่อย ๆ ทุกทิศทาง นักวิทยาศาสตร์ตรวจสอบได้จากการเปลี่ยนแปลงเส้นสเปกตรัมของแสง ที่ได้รับที่บ่งบอกว่าากำลังเคลื่อนที่ออกไป นันเป็นสิ่งที่แสดงให้เห็น ว่า เอกภพก็มีการขยายตัวออกไปเรื่อย ๆ เช่นเดียวกัน


อุณหภูมิพื้นหลังของเอกภพ

การค้นพบอุณหภูมิของเอกภพในปัจจุบัน หรืออุณหภูมิพื้นหลัง  เป็นการค้นพบโดยบังเอิญโดยนักวิทยาศาสตร์ชาวอเมริกา  2  คน คือ อาร์โน เพนเซียส  และ   โรเบิร์ต วิลสัน แห่งห้องปฏิบัติการเบลเทเลโฟน  เมื่อปีพ.ศ.2508  ขณะนักวิทยาศาสตร์ทั้งสองคน กำลังทดสอบระบบเครื่องรับสัญญาณของกล้อง โทรทรรศน์วิทยุ ปรากฏว่ามีสัญญาณรบกวนตลอดเวลา ไม่ว่าจะเป็นกลางวันหรือกลางคืน หรือฤดูต่างๆ แม้เปลี่ยนทิศทาง และทำความสะอาดสายอากาศแล้วก็ยังมีสัญญาณรบกวนอยู่เช่นเดิม ต่อมาทราบภายหลังว่าเป็นสัญญาณที่เหลืออยู่ในอวกาศเทียบได้กับพลังงานของการแผ่รังสีของวัตถุดำ ที่มีอุณหภูมิประมาณ 2.73 เคลวินหรือประมาณ – 270 องศาเซลเซียสในขณะเดียวกัน โรเบิร์ต ดิกกี พี.เจ.อีพี เบิลส์ เดวิด โรลล์ และ เดวิด วิลคินสัน แห่งมหาวิทยาลัยปรินซ์ตัน         ได้ทำนายมานานแล้วว่า การแผ่รังสีจากบิกแบงที่เหลืออยู่ในปัจจุบันน่าจะตรวจสอบได้ โดยกล้องโทรทรรศน์วิทยุดังนั้นการพบพลังงานจากทุกทิศในปริมาณที่เทียบได้กับพลังงานการแผ่รังสี ของวัตถุดำที่ประมาณ 2.73 เคลวิน จึงเป็นอีกข้อหนึ่งที่สนับสนุน ทฤษฎีบิกแบงได้เป็นอย่างดี




กฏของฮัมเบิล



กาแล็กซี

          คือ อาณาจักรหรือระบบของดาวฤกษ์จำนวนนับแสนล้านดวง อยู่รวมกันด้วยแรงโน้มถ่วงระหว่างมวลสารทั้งหมดที่อยู่ภายในกาแล็กซีกับหลุมดำมวลยวดยิ่งที่แก่นกลางของกาแล็กซี กาแล็กซีต่างๆ เกิดขึ้นหลังบิกแบงประมาณ 1000 ล้านปี กาแล็กซีที่สำคัญซึ่งมีระบบสุริยะเป็นสมาชิกอยู่ ได้แก่ แอนโดรเมลา เป็นต้น นักดาราศาสตร์แบ่งกาแล๊กซีออกเป็น ประเภทใหญ่ๆคือ

1.กาแล็กซีปกติ ซึ่งกาแล็กซีปกตินี้จะแบ่งออกได้เป็น 3 กลุ่ม
 - กาแล็กซีรี มีรูปร่างค่อนข้างเรียบ มรการกระจายแสงของดาวฤกษ์อย่างสม่ำเสมอ ใช้รหัสว่า E
 - กาแล็กซีชนิดกังหัน เป็นกาแล็กซีที่มีใจกลางสว่าง ตรงกลางมีดาวฤกษ์หนาแน่น เรียกว่า ใจกลางกาแล็กซี ใช้รหัสว่า S
 - กาแล็กซีลูกสะบ้า มีรูปร่างคล้ายเลนส์ อยู่ระหว่างกาแล็กซีรีและกาแล็กซีชนิดกังหัน มีใจกลางสว่าง ใช้รหัสว่า SO
2. กาแล็กซีไม่มีรูปร่าง




กาแล็กซีทางช้างเผือก



- กาเเล็กซีเพื่อนบ้าน ซึ่งสังเกตเห็นได้ด้วยตาเปล่า ได้เเก่ กาเเล็กซีเเอนโดรเมดา กาเเล็กซีเเมกเจลเเลนใหญ่ กาเเล็กซีเเมกเจลเเลนเล็ก
- การกระจายของดาวฤกษ์ในกาเเล็กซีทางช้างเผือก





ประเภทของกาเเล็คซี

1.กาแล็กซีกังหัน (Spiral Galaxy) แบ่งย่อยเป็น 3 แบบ กาแล็กซีกังหัน Sa มีส่วนป่องหนาแน่น แขนไม่ชัดเจน, กาแล็กซีกังหัน Sb มีส่วนป่องใหญ่ แขนยาวปานกลาง, กาแล็กซีกังหัน Sc มีส่วนป่องเล็ก แขนยาวหนาแน่น 





2.กาแล็กซีกังหันแบบมีคาน หรือ กาแล็กซีกังหันบาร์ (Barred Spiral Galaxy) แบ่งย่อยเป็น 3 แบบ  กาแล็กซีกังหันบาร์ SBa มีส่วนป่องใหญ่ไม่เห็นคานไม่ชัดเจน, กาแล็กซีกังหันบาร์ SBb มีส่วนป่องขนาดกลาง เห็นคานได้ชัดเจน, กาแล็กซีกังหันบาร์ SBc มีส่วนป่องเล็กมองเห็นคานยาวชัดเจน





3.กาแล็กซีรี (elliptical galaxy) มีรูปร่างแบบกลมรี ซึ่งบางกาแล็กซีอาจกลมมาก บางกาแล็กซีอาจรีมาก  นักดาราศาสตร์ให้ความเห็น
กาแล็กซีประเภทนี้จะมีรูปแบบกลมรีมากน้อยเพียงใดนั้นขึ้นอยู่กับอัตราการหมุนของกาแล็กซี ถ้าหมุนเร็วกาแล็กซีจะมีรูปแบบยาวรีมาก






4. กาแล็กซีไร้รูปร่าง ( IRREGULAR GALAXIES ) มีลักษณะที่แตกต่างไปจาก 3 แบบข้างต้น มีอยู่น้อยมากในเอกภพ เช่น กาแล็กซีแมกเจลแลนใหญ่และเล็ก