Translate

วันอาทิตย์ที่ 16 กุมภาพันธ์ พ.ศ. 2557

บทที่ 6 ดาวฤกษ์

วัฏจักรของดาวฤกษ์

        ดาวฤกษ์เกิดขึ้นจากกลุ่มแก๊สและฝุ่นรวมตัวกัน ซึ่งเรียกว่า เนบิวลา เมื่อก๊าซร้อนในเนบิวลาอัดแน่นจนมีอุณหภูมิสูงถึง 10 ล้านเคลวิน จะเกิดปฏิกิริยานิวเคลียร์ฟิวชั่นหลอมรวมไฮโดนเจนให้เป็นฮีเลียม กำเนิดเป็นดาวฤกษ์  ดาวฤกษ์ที่เห็นบนท้องฟ้าส่วนมากเป็นดาวในลำดับหลัก เมื่อดาวใกล้หมดอายุจะออกจากลำดับหลักไปเป็นดาวยักษ์แดง และมีวิวัฒนาการที่ต่างกันขึ้นอยู่กับมวลตั้งต้นที่กำเนิดเป็นดาว ดังนี้
  • ดาวฤกษ์ที่มีมวล <2 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวแคระห์ขาว (คาร์บอน) 
  • ดาวฤกษ์ที่มีมวล <8 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวแคระห์ขาว (ออกซิเจน) 
  • ดาวฤกษ์ที่มีมวล >8 เท่าของดวงอาทิตย์ จบชีวิตเป็นดาวนิวตรอน และพัลซาร์ 
  • ดาวฤกษ์ที่มีมวล >18 เท่าของดวงอาทิตย์ จบชีวิตเป็นหลุมดำ 

เนบิวลา

        ดาวเกิดจากการรวมตัวของแก๊สและฝุ่นในอวกาศ (Interstellar medium)  เมื่อมีมวล มวลมีแรงดึงดูดซึ่งกันและกันตามกฎความโน้มถ่วงแห่งเอกภพ (The Law of Universal) ของนิวตันที่มีสูตรว่า F = G (m1m2/r2) แรงดึงดูดแปรผันตามมวล มวลยิ่งมากแรงดึงดูดยิ่งมาก เราเรียกกลุ่มแก๊สและฝุ่นซึ่งรวมตัวกันในอวกาศว่า “เนบิวลา” (Nebula) หรือ “หมอกเพลิง” เนบิวลาเป็นกลุ่มแก๊สที่ขนาดใหญ่หลายปีแสง แต่เบาบางมีความหนาแน่นต่ำมาก องค์ประกอบหลักของเนบิวลาคือแก๊สไฮโดรเจน เนื่องจากไฮโดรเจนเป็นธาตุที่มีโครงสร้างพื้นฐาน ซึ่งเป็นธาตุตั้งต้นของทุกสรรพสิ่งในจักรวาล 
        เนบิวลามีอุณหภูมิต่ำ เนื่องจากไม่มีแหล่งกำเนิดความร้อน ในบริเวณที่แก๊สมีความหนาแน่นสูง อะตอมจะยึดติดกันเป็นโมเลกุล ทำให้เกิดแรงโน้มถ่วงดึงดูดแก๊สจากบริเวณโดยรอบมารวมกันอีก ทำให้มีความหนาแน่นและมวลเพิ่มขึ้นอีกจนกระทั่งอุณหภูมิภายในสูงประมาณ 10 เคลวิน   มวลที่เพิ่มขึ้นทำให้พลังงานศักย์โน้มถ่วงของแต่ละโมเลกุลที่ตกเข้ามายังศูนย์กลางของกลุ่มแก๊ส เปลี่ยนรูปเป็นพลังงานความร้อน และแผ่รังสีอินฟราเรดออกมา  
        ต่อมาเมื่อกลุ่มแก๊สมีความหนาแน่นสูงขึ้นจนความร้อนภายในไม่สามารถแผ่ออกมาได้ อุณหภูมิภายในแกนกลางจึงสูงขึ้นอย่างรวดเร็ว  มวลของแก๊สมีแรงโน้มถ่วงสูงจนเอาชนะแรงดันซึ่งเกิดจากการขยายตัวของแก๊สร้อน กลุ่มแก๊สจึงยุบตัวเข้าสู่ศูนย์กลางจนมีอุณหภูมิสูงถึง 10 ล้านเคลวิน จุดปฏิกิริยานิวเคลียร์ฟิวชันทำให้อะตอมของไฮโดรเจนหลอมรวมกันเป็นธาตุใหม่คือ ฮีเลียม มวลบางส่วนเปลี่ยนรูปเป็นพลังงาน (นิวเคลียร์ฟิวชัน) ตามสมการ E = mc2  ดาวฤกษ์จึงอุบัติขึ้นมา 
        ดาวฤกษ์ที่เกิดขึ้นใหม่มีอุณหภูมิสูงประมาณ 25,000 K เป็นดาวสเปกตรัมประเภท O แผ่รังสีเข้มสุดในช่วงอัลตราไวโอเล็ต  เนบิวลาที่ห่อหุ้มดาวดูดกลืนพลังงานจากรังสีอัลตราไวโอเล็ต และแผ่รังสีเข้มสุดในช่วง H-alpha ซึ่งมีความยาวคลื่น 656 nm ออกมาทำให้เรามองเห็นเป็น “เนบิวลาสว่าง” (Diffuse Nebula) สีแดง ได้แก่ เนบิวลาสว่างใหญ่ในกลุ่มดาวนายพราน (M 42 Great Orion Nebula) ในภาพที่ 1  ซึ่งเห็นได้ว่า ใจกลางของเนบิวลาสว่างมีดาวฤกษ์เกิดใหม่อยู่ภายใน

 
ภาพท่ี่ 1 เนบิวลาสว่างในกลุ่มดาวนายพราน        

        เนื่องจากเนบิวลามีแก๊สและฝุ่นอยู่หนาแน่น บางครั้งอนุภาคขนาดใหญ่เป็นอุปสรรคขวางกั้นการแผ่รังสี จึงเกิดการกระเจิงของแสง (Scattering) ทำให้มองเห็นเป็นเนบิวลาสีฟ้า เช่นเดียวกับที่การกระเจิงของแสงอาทิตย์ในบรรยากาศโลกที่ทำให้ท้องฟ้าเป็นสีฟ้า เราเรียกเนบิวลาประเภทนี้ว่า “เนบิวลาสะท้อนแสง” (Reflection Nebula) ตัวอย่างเช่น เนบิวลาในกระจุกดาวลูกไก่ (M45 Pleiades) ดังภาพที่ 2 

     
ภาพท่ี่ 2 เนบิวลาสะท้อนแสงในกระจุกดาวลูกไก่ 

        อย่างไรก็ตามบางส่วนของเนบิวลาเป็นกลุ่มแก๊สที่มีอุณหภูมิต่ำอยู่อย่างหนาแน่น กลุ่มแก๊สเหล่านี้เหล่านี้บดบังแสงสว่างจากดาวฤกษ์เกิดใหม่หรือเนบิวลาสว่างซึ่งอยู่ด้านหลัง เราจึงมองเห็นเป็น “เนบิวลามืด” (Dark Nebula) เช่น เนบิวลารูปหัวม้าในกลุ่มดาวนายพราน (Horsehead Nebula) ดังภาพที่ 3 


ภาพท่ี่ 3 เนบิวลาสะท้อนแสงในกระจุกดาวลูกไก่ 

        แม้ว่าในตำราเรียนจะแบ่งเนบิวลาออกเป็น 3 ประเภทคือ เนบิวลาสว่าง เนบิวลาสะท้อนแสง และเนบิวลามืด ในความจริงแล้วเนบิวลาทั้งสามชนิดเป็นเพียงปรากฎการณ์ซึ่งปรากฏให้เห็นเฉพาะในมุมมองจากโลก  หากดูในภาพที่ 4 จะเห็นว่า เนบิวลาไทรฟิด (M20 Trifid Nebula)  เป็นกลุ่มแก๊สซึ่งมีทั้งเนบิวลาสว่าง เนบิวลาสะท้อนแสง และเนบิวลามืด อยู่ในตัวเดียวกัน  ดาวเกิดใหม่ท่ีอยู่ภายในแผ่รังสีออกมากระตุ้นให้กลุ่มแก๊สท่ีอยู่บริเวณรอบๆ แผ่รังสีปรากฏเป็นเนบิวลาสว่างสีแดง แต่มีกลุ่มแก๊สหนาทึบบางส่วนมาบังแสงสว่างทำให้มองเห็นเป็นเนบิวลามืด และเกิดการกระเจิงของแสงที่กลุ่มแก๊สที่อยู่ด้านหลัง ทำให้มองเห็นเป็นเนบิวลาสะท้อนแสงสีน้ำเงิน 

ภาพท่ี่ 4 เนบิวลาทริฟิดในกลุ่มดาวคนยิงธนู


โปรโตสตาร์

        เนบิวลาเป็นกลุ่มแก๊สที่มีความหนาแน่นและอุณหภูมิต่างๆ กัน  ภาพที่ 1 แสดงส่วนขยายของเนบิวลานกอินทรี (M 16 Eagle Nebula) จากภาพซ้ายมือด้านบนเรียงลำดับจากซ้ายไปขวา และจากบนลงล่าง จนถึงภาพขวามือด้านล่าง  บริเวณที่ปรากฏให้เห็นเป็นจะงอยสีดำ คือ กลุ่มแก๊สความหนาแน่นสูงที่กำลังจะยุบตัวกำเนิดเป็นดาวฤกษ์ 


ภาพที่ 1 เนบิวลานกอินทรีย์ (M 16 Eagle Nebula)

     
   เมื่อกลุ่มแก๊สในเนบิวลาสะสมตัวกันมากขึ้น จนกระทั่งแรงโน้มถ่วงสามารถเอาชนะแรงดันซึ่งเกิดจากการขยายตัวของแก๊ส กลุ่มแก๊สจะยุบตัวลงอย่างต่อเนื่องและหมุนรอบตัวตามกฎอนุรักษ์โมเมนตัมเชิงมุม (Angular Momentum) เป็นจานรวมมวล  แกนกลางของกลุ่มแก๊สเรียกว่า “โปรโตสตาร์”(Protostar)  เมื่อโปรโตสตาร์มีอุณหภูมิสูงถึงระดับล้านเคลวิน จะปล่อยอนุภาคพลังงานสูงที่มีลักษณะคล้ายลมสุริยะเรียกว่า “Protostellar Wind” ออกมา เมื่อโปรโตสตาร์ยุบตัวต่อไป กระแสอนุภาคพลังงานสูงจะมีความรุนแรงมาก จนปรากฏเป็นลำพุ่งขึ้นจากขั้วของดาวตามแกนหมุนรอบตัวเองของโปรโตสตาร์ (ภาพที่ 2)

ภาพที่ 2 โปรโตสตาร์
      
  การยุบตัวของโปรโตสตาร์ดำเนินต่อไป จนกระทั่งแกนของโปรโตสตาร์มีอุณหภูมิสูงถึง 10 ล้านเคลวิน จุดปฏิกิริยานิวเคลียร์ฟิวชัน (Nuclear Fusion) ทำให้อะตอมไฮโดรเจนหลอมรวมกันกลายเป็นธาตุที่หนักกว่าคือฮีเลียม ขณะนั้นแก๊สที่แก่นกลางจะมีอุณหภูมิสูงมากและมีความดันสูงพอที่จะต้านทานแรงโน้มถ่วงของดาว การยุบตัวของดาวจึงยุติลง  สมดุลระหว่างแรงโน้มถ่วงและแรงดันของแก๊สร้อนรักษาขนาดของดาวให้คงที่เป็นรูปทรงกลม ณ จุดนี้ถือว่า ดาวฤกษ์ได้ถือกำเนิดขี้นแล้ว (The star is born)  ตลอดช่วงชีวิตของดาวจะมีกลไกอัตโนมัติควบคุมปฏิกิริยาฟิวชันภายในแก่นดาว หากอัตราการเกิดปฏิกิริยาฟิวชันสูงเกินไป แก๊สร้อนที่แก่นกลางจะดันดาวให้ขยายตัวออก ทำให้อุณภูมิลดลงและอัตราการเกิดฟิวชันก็จะลดลงด้วย ในทางกลับกันหากอัตราการเกิดฟิวชันต่ำเกินไป แก๊สที่แกนกลางเย็นตัวลง เนื้อสารของดาวจะยุบตัวกดทับทำให้อุณหภูมิกลับสูงขึ้น เพิ่มอัตราการเกิดฟิวชันคืนสู่ระดับปกติ  อย่างไรก็ตามขนาดของดาวฤกษ์จะยุบพองเล็กน้อยตลอดเวลา ตามกลไกการควบคุมโดยธรรมชาติ 
ภาพที่ 3 แผนภาพ H-R แสดงวิวัฒนาการของกำเนิดดาว
       
     เนื่องจากเนบิวลามีขนาดใหญ่และมีความหนาแน่นไม่เท่ากัน เนบิวลาจึงสามารถก่อกำเนิดดาวฤกษ์จำนวนหลายพันดวง โดยที่ดาวเกิดใหม่แต่ละดวงมีมวลและขนาดแตกต่างกัน  โปรโตสตาร์ที่มวลตั้งต้นเท่ากับดวงอาทิตย์ เมื่อจุดนิวเคลียร์ฟิวชันจะเกิดเป็นดาวสเปกตรัม G สีเหลือง โปรโตสตาร์ที่มีมวลมากกว่าสองเท่าของดวงอาทิตย์ขึ้นไป จะเกิดเป็นดาวสเปกตรัม O, B หรือ A สีขาวอมน้ำเงิน  ส่วนโปรโตสตาร์ที่มีมวลน้อยกว่าดวงอาทิตย์จะเกิดเป็นดาวสเปกตรัม K หรือ M สีส้มแดง         แผนภาพ H-R ในภาพที่ 4 แสดงให้เห็นถึงมวลตั้งต้นของโปรโตสตาร์ซึ่งทำให้เกิดดาวฤกษ์ในลำดับหลักซึ่งมีสเปกตรัมประเภทต่างๆ จะเห็นได้ว่า โปรโตสตาร์ที่มีมวลตั้งต้นมากกว่าดวงอาทิตย์ 15 เท่า จะพัฒนาเป็นดาวฤกษ์สีน้ำเงินโดยใช้เวลา 10,000 ปี  โปรโตสตาร์ที่มีมวลเท่ากับดวงอาทิตย์จะพัฒนาเป็นดาวฤกษ์สีเหลืองโดยใช้เวลา 100,000 ปี  ส่วนโปรโตสตาร์ที่มีมวลตั้งต้นเพียง 0.5 เท่าของดวงอาทิตย์ จะพัฒนาเป็นดาวฤกษ์สีแดง เช่น Gliese 581 ในภาพท่ี 4  โดยใช้เวลา 1,000,000 ปี ทั้งนี้เป็นเพราะมวลตั้งต้นสูงทำให้เกิดนิวเคลียร์ฟิวชันรุนแรงกว่ามวลตั้งต้นต่ำ อัตราการเผาไหม้ที่รุนแรงทำให้อุณหภูมิสูง ดาวฤกษ์มวลมากจึงมีขนาดใหญ่และแผ่รังสีคลื่นสั้นกว่า ดาวฤกษ์มวลน้อยซึ่งมีขนาดเล็กอุณหภูมิต่ำและแผ่รังสีคลื่นยาว 

ภาพที่ 4 ขนาดของดวงอาทิตย์ (ซ้ายมือ) เปรียบเทียบกับดาวแคระแดง Gliese 581 (ขวามือ) 

      
      อย่างไรก็ตามโปรโตสตาร์ทุกดวงไม่จำเป็นต้องประสบความสำเร็จในการพัฒนาเป็นดาวฤกษ์เสมอไป  หากกลุ่มแก๊สมีมวลตั้งต้นน้อยกว่าดวงอาทิตย์ 0.08 เท่า มวลไม่มากพอที่จะสร้างแรงกดดันให้เกิดอุณหภูมิสูงพอที่จะจุดนิวเคลียร์ฟิวชัน  โปรโตสตาร์จึงยุบตัวลงกลายเป็นดาวแคระน้ำตาล (Brown Dwarf) เช่น ดาวพฤหัสบดีในระบบสุริยะของเรา  ซึ่งถ้าหากดาวพฤหัสบดีมีมวลตั้งต้นมากกว่านี้ 80 เท่า ความกดดันที่ใจกลางจะทำให้อุณหภูมิสูงจนเกิดนิวเคลียร์ฟิวชันและพัฒนาเป็นดวงอาทิตย์ดวงที่สอง  ระบบสุริยะของเราก็จะเป็นระบบดาวคู่ (Binary Stars) เช่นเดียวกับระบบดาวฤกษ์ส่วนใหญ่บนท้องฟ้า 
        ในทางกลับกันกลุ่มแก๊สที่มีมวลมากกว่าดวงอาทิตย์ 100 เท่า  แรงกดดันของแก๊สจะมีอุณหภูมิสูงมากเกินไป ทำให้อัตราการเกิดปฏิกิริยานิวเคลียร์ฟิวชันสูงเกินกว่าจะรักษาสมดุลไว้ได้ ดาวจะระเบิดในทันที ดังนั้นดาวฤกษ์ทุกดวงจึงมีมวลอยู่ระหว่าง 0.08 ถึง 100 เท่า ของดวงอาทิตย์


กระจุกดาวเปิด

        เนบิวลาเปรียบเสมือนรังไข่ของดาว เนบิวลาเป็นกลุ่มแก๊สซึ่งประกอบด้วยอะตอมของไฮโดรเจนซึ่งเป็นวัตถุต้นกำเนิดของดาว เนบิวลาแต่ละกลุ่มมีขนาดหลายปีแสง สามารถก่อกำเนิดดาวฤกษ์จำนวนหลายร้อยดวงในระยะเวลาไล่เลี่ยกัน ภาพที่ 1 แสดงการเปรียบเทียบภาพถ่ายในช่วงแสงที่ตามองเห็นกับภาพอินฟราเรดของเนบิวลาสว่างใหญ่ในกลุ่มดาวนายพราน (M 42 Great Orion Nebula)  ภาพถ่ายแสงที่ตามองเห็นด้านซ้ายมือแสดงให้เห็นว่าใจกลางของเนบิวลาเต็มไปด้วยกลุ่มแก๊สหนาทึบ มีดาวฤกษ์ซึ่งเป็นต้นกำเนิดของแสงซึ่งเรียกว่า "เทรปีเซียม" (Trapezium) อยู่ภายในเพียงไม่กี่ดวง  แต่ภาพถ่ายอินฟราเรดทางด้านขวามือแสดงให้เห็นว่า ภายในใจกลางของเนบิวลามีดาวอยู่เป็นจำนวนมาก ทั้งนี้เนื่องจากรังสีอินฟราเรดมีความยาวคลื่นมาก จึงส่องผ่านทะลุกลุ่มแก๊สออกมาได้

ภาพที่ 1 เปรียบเทียบภาพแสงที่ตาเห็น (ซ้ายมือ) กับภาพอินฟราเรด (ขวามือ) ของเนบิวลานายพราน

        หลังจากที่โปรโตสตาร์จุดปฏิกิริยานิวเคลียร์ฟิวชันกลายเป็นดาวฤกษ์ที่มีอุณหภูมิสูงมาจนแผ่รังสีอัลตราไวโอเล็ตและลมดาราวาต (Stellar Winds) ซึ่งเป็นกระแสอนุภาคพลังงานสูงที่มีลักษณะเช่นเดียวลมสุริยะของดวงอาทิตย์ พัดกวาดแก๊สในเนบิวลาให้สลายตัวไป  เผยให้เห็นดาวฤกษ์เกิดใหม่นับร้อยดวงซึ่งซ่อนตัวภายในเรียกว่า “กระจุกดาวเปิด” (Open Cluster)  ภาพท่ี 2 เป็นภาพของกระจุกดาวลูกไก่ซึ่งมีแก๊สห่อหุ้มอยู่เบาบาง เนื่องจากดาวฤกษ์ที่เกิดใหม่ส่วนใหญ่มีอุณหภูมิสูงกว่า 10,000 K แผ่รังสีเข้มสุดในช่วงรังสีอัลตราไวโอเล็ต ซึ่งมีพลังงานสูง ทำลายอะตอมของไฮโดรเจนที่เคยเป็นแก๊สในเนบิวลา  และในที่สุดก็จะเหลือให้เห็นเป็นเพียงกระจุกดาวเปิดเท่านั้น

ภาพท่ี 2 ดาวฤกษ์ในกระจุกดาวลูกไก่       
        อุปมาได้ว่าชีวิตของดาวเฉกเช่นชีวิตของคน แม้ว่าจะเกิดเป็นพี่น้องคลานตามกันมา แต่ละคนย่อมมีวิถีชีวิตเป็นของตัวเอง ดวงอาทิตย์ของเราถือกำเนิดพร้อมๆ กับดาวฤกษ์จำนวนมากซึ่งเป็นสมาชิกของกระจุกดาวเปิดภายในโซลาร์เนบิวลา (Solar nebula) แต่เมื่อกาลเวลาผ่านไป 4,600 ล้านปี  ดาวฤกษ์ที่มีมวลมากเผาผลาญเชื้อเพลิงอย่างรวดเร็วและแตกดับสูญไปแล้ว  ดาวฤกษ์มวลน้อยยังคงอยู่ ดาวแต่ละดวงแยกย้ายกันโคจรไปตามแขนของกาแล็กซีทางช้างเผือกในทิศทางที่แตกต่างกัน จึงไม่คงเหลือสภาพกระจุกดาวเปิดให้เห็น  ดวงอาทิตย์ของเราโคจรรอบทางช้างเผือกมาแล้วมากกว่า 15 รอบ 
        ในการสาธิตสมบัติของดาวฤกษ์เกิดใหม่ นักดาราศาสตร์ได้นำสมบัติของดาวฤกษ์ในกระจุกดาวลูกไก่มาลงจุดแสดงในแผนภาพแฮรท์สชปรุง – รัสเซลล์ (H-R Diagram) ดังภาพที่ 3 จะเห็นว่า สมาชิกดาวส่วนใหญ่เป็นดาวลำดับหลักที่มีสเปกตรัม A และ F ซึี่งเป็นดาวสีขาว นอกจากนั้นยังมีดาวยักษ์สีขาวเป็นจำนวนมาก ดาวยักษ์เหล่านี้มีอุณหภูมิสูงเนื่องจากมีมวลตั้งตั้นสูง เกิดปฏิกริยานิวเคลียร์ฟิวชันอย่างรุนแรง ดาวเผาผลาญเชื้อเพลิงอย่างรวดเร็ว ทำให้ดาวมีอายุสั้นเมื่อเปรียบเทียบกับดาวลำดับหลักสีแดง ซี่งมีมวลตั้งตั้นต่ำ เกิดปฏิกริยานิวเคลียร์ฟิวชันไม่รุนแรง ดาวเผาผลาญเชื้อเพลิงอย่างช้าๆ ทำให้ดาวมีอายุยืนยาว
ภาพที่ HR diagram ของกระจุกดาวลูกไก่ 


ดาวลำดับหลัก

        ขนาดของดาวฤกษ์ขึ้นอยู่กับแรงดันแก๊สร้อนซึ่งดันออกจากแก่นกลางสู่พื้นผิว และมวลของดาวซึ่งทำให้เกิดแรงโน้มถ่วง หากอัตราการเกิดฟิวชันสูงเกินไป แก๊สที่แก่นกลางจะดันดาวให้ขยายตัวออก เมื่อแก๊สขยายตัวอุณหภูมิจะลดต่ำลง (ตามกฎของแก๊ส) ทำให้อัตราการเกิดฟิวชันลดลงด้วย ในทางกลับกันหากอัตราการเกิดฟิวชันต่ำเกินไป แก๊สที่แก่นกลางจะเย็นตัวลง แรงดันแก๊สลดลง เนื้อสารของดาวยุบตัวลงมา ทำให้เกิดความดันและอุณหภูมิสูงขึ้น เพิ่มอัตราการเกิดฟิวชันให้สูงขึ้น ระบบกลไกนี้ช่วยรักษาสมดุลของดาวฤกษ์ ให้มีอัตราการเกิดปฏิกิริยาฟิวชันคงที่สม่ำเสมอเกือบตลอดทั้งชีวิตของดาว อายุขัยของดาวในช่วงเวลานี้เราเรียกว่า “ดาวลำดับหลัก” (Main sequence stars)


ภาพที่ 1 แผนภาพ H-R แสดงคุณสมบัติของดาวที่รู้จักกันดี
        เมื่อพิจารณาในแผนภาพ H-R ในภาพที่ 1 จะเห็นว่า ดาวส่วนใหญ่จะอยู่ในลำดับหลัก ทั้งนี้เนื่องจากดาวใช้เวลา 80% ของอายุขัยอยู่ในลำดับหลัก ดาวลำดับหลักสีน้ำเงินมีอุณหภูมิสูงและมีกำลังส่องสว่างมากกว่าดาวลำดับหลักสีแดง เพราะว่า ดาวลำดับหลักสีน้ำเงินมีมวลตั้งต้นสูงมาก จึงมีขนาดใหญ่ แก๊สมวลมากกดทับกัน ทำให้ดาวมีอุณหภูมิสูงจนแผ่รังสีที่มีความยาวคลื่นเข้มสุดในช่วงรังสีอัลตราไวโอเล็ต ส่วนดาวสีแดงมีมวลตั้งต้นน้อย มีขนาดเล็ก แก๊สจำนวนน้อยกดทับกัน ทำให้ดาวมีอุณหภูมิต่ำ แผ่รังสีที่มีความยาวคลื่นเข้มสุดในช่วงรังสีอินฟราเรด

ภาพที่ 2 สเปกตรัมของดาวประเภทต่างๆ
        เมื่อพิจารณาเปรียบเทียบสเปกตรัมของดาวแต่ละประเภทจะพบองค์ประกอบดังนี้ (ดูภาพที่ 2 และ 3 ประกอบ)
  • ดาวสเปกตรัม O อุณหภูมิมากกว่า 25,000​ K มีเส้นดูดกลืนของไฮโดรเจนอยู่อย่างเบาบาง เนื่องจากดาวมีอุณหภูมิสูงมากกว่าสามหมื่นเคลวิน ประจุไม่สามารถเกาะตัวเป็นอะตอม จึงอยู่ในสถานะไอโอไนเซชัน (Ionization)
  • ดาวสเปกตรัม B มีอุณหภูมิพื้นผิว 25,000 - 10,000​ K มีเส้นดูดกลืนของไฮโดรเจนและฮีเลียม เนื่องจากดาวมีอุณหภูมิต่ำลงพอที่ประจุจะจับตัวกันเป็นอะตอมได้แล้ว
  • ดาวสเปกตรัม A มีอุณหภูมิพื้นผิว 10,000 - 8,000​ K อุณหภูมิประมาณ​10,000 - 25,000​ K มีเส้นดูดกลืนของไฮโดรเจนชัดเจนยิ่งขึ้น เนื่องจากดาวมีอุณหภูมิต่ำกว่าสเปกตรัม B
  • ดาวสเปกตรัม F มีอุณหภูมิพื้นผิว 8,000 - 6,000​ K ยังคงมีเส้นดูดกลืนของไฮโดรเจน และเริ่มมีเส้นดูดกลืนอะตอมของธาตุหนักหลายชนิด เช่น แคลเซียม
  • ดาวสเปกตรัม G มีอุณหภูมิพื้นผิว 6,000 - 5,000​ K เช่น ดวงอาทิตย์ มีเส้นดูดกลืนของทั้งธาตุหนักและธาตุเบาหลายชนิด เช่น ไฮโดรเจน แคลเซียม และเหล็ก เป็นต้น
  • ดาวสเปกตรัม K  มีอุณหภูมิพื้นผิว 5,000 - 4,000​ K มีเส้นดูดกลืนของทั้งธาตุหนักและธาตุเบาหลายชนิด เช่น ไฮโดรเจน แคลเซียม และเหล็ก เป็นต้น
  • ดาวสเปกตรัม M มีอุณหภูมิพื้นผิว 4,000 - 3,000​ K มีเส้นดูดกลืนของโมเลกุล เช่น ไททาเนียมออกไซด์ (TiO) และไฮโดรคาร์บอน (CH) เนื่องจากที่อุณหภูมิประมาณ 3,000 เคลวิน อะตอมสามารถเกาะตัวกันเป็นโมเลกุล
ภาพที่ 3 ความเข้มของเส้นดูดกลืนบนสเปกตรัมประเภทต่างๆ
        ธาตุต่างๆ บนผิวดาวมีองค์ประกอบเคมีที่หลายหลาก สืบเนื่องจากระดับพลังงานที่อะตอมดูดกลืน ซึ่งจะแทนสัญลักษณ์ด้วยตัวเลขโรมัน แสดงระดับของการไอโอไนเซชัน เช่น Si I หมายถึง ซิลิกอนปรกติซึ่งไม่มีการเสียอิเล็กตรอน Si II หมายถึงซิลิกอนที่สูญเสียอีเลคตรอน 1 ตัว Si III หมายถึง ซิลิกอนซึ่งสูญเสียอิเล็กตรอน 2 ตัว 
 
        ดวงอาทิตย์มีอุณหภูมิพื้นผิว 5,800 K จัดเป็นสเปกตรัม G2 มีเส้นดูดกลืนเรียงตามความเข้มจากมากไปน้อยดังนี้ Ca II, Fe II, Fe I, H และ Ca I ตามลำดับ จะเห็นว่าอุณหภูมิระดับนี้สูงพอที่จะทำให้ อะตอมของแคลเซียมและเหล็ก สูญเสียอิเล็กตรอน
หมายเหตุ
        "ดาวสีน้ำเงินเป็นดาวเกิดใหม่มีอายุน้อย ดาวสีแดงเป็นดาวใกล้ตายมีอายุมาก" ไม่ใช่ข้อสรุปที่ถูกต้องเสมอไป จริงอยู่ที่เรามองเห็นดาวฤกษ์เกิดใหม่บนท้องฟ้าส่วนมากเป็นดาวสเปกตรัม O, B สีขาวอมน้ำเงิน เพราะว่าเป็นดาวมวลมากจึงมีกำลังส่องสว่างมาก  อย่างไรก็ตามยังมีดาวฤกษ์เกิดใหม่จำนวนมากมายที่เป็นดาวแคระสีแดง เพียงแต่เป็นดาวมวลน้อยจึงมีขนาดเล็กไม่ส่องสว่างให้เห็นด้วยตาเปล่า   




ไม่มีความคิดเห็น:

แสดงความคิดเห็น